
ISRAEL JOURNAL OF MATHEMATICS 130 (2002), 157 205 

ON MIXING PROPERTIES OF COMPACT 
GROUP EXTENSIONS OF HYPERBOLIC SYSTEMS 

BY 

D M I T R Y  D O L G O P Y A T  

Department of Mathematics, Penn State University 
Unwers~ty Park, PA 16801, USA 

e-mazl: dolgop@math.psu.edu 
webs~te: http:////www.math.psu.edu//dolgop// 

ABSTRACT 

We study compact group extensions of hyperbolic diffeomorphisms. We 
relate mixing properties of such extensions with accessibility properties 
of their stable and unstable laminations. We show that generically the 
correlations decay faster than any power of time. In particular, this is 
always the case for ergodic semisimple extensions as well as for stably 
ergodic extensions of Anosov diffeomorphisms of infranilmanifolds. 

1. I n t r o d u c t i o n  

1.1. OVERVIEW. This paper treats compact  group extensions of hyperbolic 

systems. These systems have a t t rac ted  much a t tent ion in the past  because they 

provide one of the simplest examples of weakly hyperbolic systems. Due to the 

major  developments in the 1960s and 1970s the theory of uniformly hyperbolic 

systems (i.e., Anosov and Axiom A diffeomorphisms) is quite well unders tood 

(see [3, 7]). I t  is also now generally accepted tha t  the hyperbolic s t ructure is 

the main cause of the chaotic behavior in deterministic systems. Thus it is 

impor tan t  to unders tand how much the assumptions of uniform hyperbolici ty 

can be weakened so tha t  the same conclusions remain valid. One direction of 

research which experiences a new wave of interest now is the theory of partially 

hyperbolic or slightly less generally transversely hyperbolic systems. In this case 
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our diffeomorphism preserves some foliation and is hyperbolic in the transverse 

direction, at least, when restricted to the non-wandering set. The systems we 

deal with can be specified by the requirement that the foliation involved has 

compact leaves and the maps between leaves are isometries. If G is a compact 

group the diffeomorphisms with this property form an open set in the space of 

G-equivariant dynamical systems and they play the same role in the equivariant 

theory as Axiom A play in the space of all diffeomorphisms. 

Thus the systems under consideration are the simplest partially hyperbolic 

systems since we have very strong control over what happens in the center. Be- 

sides, harmonic analysis can be used to study such systems. These reasons make 

compact group extensions over hyperbolic systems an attractive object of inves- 

tigation. In fact, qualitative properties of these systems are well understood now. 

The progress here can be summarized as follows. First, Brin in a series of papers 

[10, 11, 12] applied the general theory of partially hyperbolic systems [13] to 

show that,  in the volume-preserving case, such systems are generically ergodic 

and weak mixing. It then follows from the general theory of compact group ex- 

tensions [43] that they are also Bernoulli. Quite recently Burns and Wilkinson 

[17] used new advances in partially hyperbolic theory [29, 40, 41] to show that 

generically ergodicity of such systems persists under small not necessary equiv- 

ariant perturbations. In another direction Field, Parry and Pollicott generalized 

Brin's theory to the non-volume preserving context. By contrast, not much is 

known about quantitative properties of such systems. This paper is a first step 

in this direction. 

To explain our results we need to introduce some notation. Let F be a topo- 

logically mixing Axiom A diffeomorphism on a compact manifold Y. Let f be a 

Holder continuous function and #I  be a Gibbs measure with potential f .  Also, 

let G be a compact connected and simply connected Lie group and X be a transi- 

tive G-space. Write M = Y • X. Let T: Y -+ G be a smooth function. Consider 

the skew action 

(1) T(y, x) = (F(y), T(y)x). 

It preserves measure # = #f •  If A and B are functions on M let 

pA,,(n) = / A(y, x)B(T'~(y, x))d#(y, x). 

Denote by 

fiA,B(n) = pA,.(n) -- / A(y,x)d#(y,x) / B(y,x)d#(y,x) 
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the correlation function. Call T r a p i d l y  m i x i n g  (T E TEA4) if ~ is a continuous 

map from C~(M)  x C~(M)  to rapidly decreasing sequences, that  is given k 

there are constants C, r such that  

(2) IPA,BI <-- CIIA[Icr(M) I[B[Icr(M)n -k" 

At first glance this definition depends also on the Gibbs potential f ,  but we will 

show that  it is not the case. One may think that  bet ter  bounds should hold for 

generic extensions. However, the decay of correlation this definition requires is 

fast enough to imply good stochastic behavior. As an example in Subsection 6.1 

we derive the Central Limit Theorem from it. On the other hand (2) is mild 

enough, so that  it can be verified in many cases. 

As in qualitative theory, accessibility properties of the system under consid- 

eration play an important  role in our analysis. Let ~F be the non-wandering 

set of F and ~ = ~tg x Y be the non-wandering set of T. Let m I, rn" be 

points in ft. We say that  m"  is accessible from m r if there is a chain of points 

m ~ = m0, m l , . . . ,  mn -- m"  such that  mj+l  belongs to either stable or unstable 

manifold of m 3. (We call such a chain n-legged.) Given m, the set of points in 

the same fiber which are accessible from m lie on an orbit of a group Ft which we 

call the Brin transitivity group. As usual different choices of reference point give 

conjugated groups. The Brin transitivity group can be obtained as follows. Let 

~P be the principal extension associated to T (that is T acts by (1) on Y x G). Let 

F(n, R) be the set of points which can be accessed from (y, id) by n-legged chains 

such that  the distance between m3+1 and m 3 inside the corresponding stable (un- 

stable) manifold is at most R. Then if n, R are large enough, F(n, R) generates 

Ft. It  was shown by Brin that  T is mixing if and only if Ft acts ergodically on 

X. Here we prove the following refinement. 

THEOREM 1.1: Let n ,R  be so large that F(n ,R)  generates Ft. Then T E 7r 
if and only if F(n, R) is Diophantine. 

Here as usual the Diophantine condition means the absence of resonances. 

More exactly we call a subset S C G Diophantine for the action of G on X if for 

large k, S does not have non-constant almost invariant vectors in c k ( x ) .  See 

Appendix A for details. 

It can be shown that  a generic pair of elements of G is Diophantine. (The 

exceptional set is a union of a countable number of positive codimension sub- 

manifolds. In case G is semisimple it is a finite union of algebraic subvarieties. 

See [25].) From this we can deduce that  in a generic family, the condition of 

Theorem 1.1 is satisfied on the set of full measure. A drawback of this result is 
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that  it does not tell how the constant C from (2) varies along the family. Thus 

one may wonder how large the interior of T~J~4 is. This question is easier if ~ is 

large [38, 27] (since then Ft is also large) or if G is semisiple. 

Let ET~G be the set of ergodic group extensions. 

COROLLARY 1.2: If f is an Anosov diffeomorphism of  an infranilmanifold then 

Int(nAd) -- Int(Cn~).  

This is a direct consequence of Theorem 1.1 and [17]. This result is quite 

satisfying because one would not expect good mixing properties from a diffeo- 

morphism which can be well-approximated by non-ergodic ones. 

COROLLARY 1.3: f i g  is semisimple then Int(7~A/[) = Int(s = s 

In general we can reduce the problem to an abelian extension. Let Ta be the 

factor of T on Y x (X/[G, G]). 

COROLLARY 1.4: f i T  E s then T E T~.M i f  and only i fTa C T~.s 

Still in the general case of compact extensions of Axiom A diffeomorphism 

we do not know how large the interior of rapidly mixing diffeomorphisms is. 

To get some insight into this we study two related classes of dynamical systems. 

These are compact group extensions of subshifts of a finite type and of expanding 

maps of Riemannian manifolds. Heuristically, the subshifts of finite type are less 

rigid than Axiom A diffeos because any subshift of a finite type has an Axiom A 

realization but small perturbations of the subshift correspond to piecewise Holder 

perturbations of diffeomorphisms. Similarly, natural extensions of expanding 

maps have Axiom A realizations but the unstable foliation will be more smooth 

than in the general case. So they are more rigid. Nonetheless, in both cases 

we show that  the interior of rapidly mixing maps is dense. In the second case 

even the interior of the exponentially mixing maps is dense. This suggests that 

the same result might be true in the context of compact extensions of Axiom A 

diffeomorphisms. 

1.2. ORGANIZATION OF THE PAPER. Let us describe the structure of the paper. 

Section 2 is preliminary. Here we recall necessary facts about Axiom A diffeo- 

morphisms and symbolic dynamics. We also present Brin's theory of compact 

extensions and its generalization by Field, Parry and Pollicott. In Section 3 we 

study compact group extensions of expanding maps. First, we describe the Lie 

algebra of Brin transitivity group. We then proceed to show that if this algebra 

equals the whole Lie algebra of G (infinitesimal complete non-integrability) then 
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the system is exponentially mixing. Under some technical assumptions we estab- 

lish the converse of this statement.  Also, we show that  if this condition is not 

satisfied the map can be made non-ergodic by an arbi trary small perturbation. 

We conclude Section 3 by showing that  infinitesimal complete non-integrability 

is generic. Section 4 treats symbolic dynamical systems. We show that,  in the 

absence of resonances, our skew extension is rapidly mixing. (See Appendix A 

for the detailed discussion of the notion of resonances we use.) We also describe 

the reduction of a general extension to the semisimple and abelian cases. We 

conclude Section 4 by showing that  rapid mixing is generic. In Section 5 we 

apply the results of the previous section to study extensions of Axiom A diffeo- 

morphisms and prove Theorem 1.1 and Corollaries 1.2-1.4. Section 6 contains 

some applications of our estimates. Some open questions are collected in Section 

7. 

For the reader familiar with the concepts of Section 2, Sections 3 and 4-6 

constitute blocks which could be read separately. Roughly speaking the difference 

between Section 3 and Section 4 is that  in the former we work with Lie algebras 

while in the latter we work with Lie groups. The unavailability of the differential 

calculus accounts for the fact that  results of Section 4 are weaker than results of 

Section 3. 

Some of the arguments of this paper are similar to [20] [21]. The main differ- 

ence which appears here as compared to [20]-[21] is that  we have to work with 

arbitrary finite-dimensional representations rather than one-dimensional ones. 

Still we show that  most of the results of [20]-[21] can be generalized to the set- 

ting of the present paper. 

NOTATION: If W is a subset of G, we denote by < W > the smallest Lie 

subgroup of G containing W. 

ACKNOWLEDGEMENT: I t  is a pleasure for me to thank W. Parry, M. Pollicott, 

M. Ratner, K. Schmidt and A. Wilkinson for useful discussions. This work is 

supported by the Miller Insti tute of Basic Research in Science. I am also grateful 

to the referee who found 341 errors and misprints in the original version of this 

paper. 

2. Pre l iminar ie s  

2.1. SUBSHIFTS OF FINITE TYPE. In this section we recall how to reduce the 

study of Axiom A diffeomorphisms to symbolic systems. First, we recall some 
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facts about subshifts of finite type. For proofs and more information on the 

subject see [7, 37]. 

For a n • n matrix A whose entries are zeroes and ones we denote by EA = 

{{wi}+~oo : A~,~,+ 1 = 1} the configuration space of a subshift of a finite 

type. Usually we omit A and write E instead of ~'h. The shift c~ acts on E 

by (aw)~ = wi+l. The one-sided shift (E +, a) is defined in the same way but 

the index set is the set of non-negative integers. For ~ < 1 we consider the dis- 

tance de(w 1, w 2) = ~k where k = m a x { j :  w~ = w~ for ]i I _< j}.  If X is a metric 

space we denote by C~(E, 2() the space of de-Lipschitz functions from E to 2(. 

C + (E, 2() is defined similarly to E+ instead of E. There is a natural embedding 

of C~-(E, X) to Ce(E, X) corresponding to the projection E ~ E +. We use the 

notation L(h) for the Lipschitz constant of h. If 2( is a Banach space we write 

h~(~) ~-1 = ~-~=0 h(a*w) �9 Functions f l  and f2 are called cohomologous (f l  ~ f2) 

if there is a function f3 such that f l (w)  = f2(w) + fn(W) - f3(~rw) + Const. For 

any S E Cs(E, X) there exists a function ] E C ~ ( E ,  2() such that S ~ ] .  If ~, 

are points in E and &o = &o we denote by [&, &] their local product. That  is, 

[~, 5J]j = ~j if j _< 0 and [~, &]j = &j if j _> 0. 

We assume that a is topologically mixing (that is all entries of some power of 

A are positive). The p r e s s u r e  f u n c t i o n a l  on Ce (E, R) is defined by 

P r ( f )  = sup / f (w)  dP + h~(a) 

where the supremum is taken over the set of a-invariant probability measures 

and h~(a) is the measure theoretic entropy of ~ with respect to P. #$ is called 

the equilibrium state or the G ibbs  m e a s u r e  with potential S if f f (w)  d# l + 

h,s (a) = P r ( f ) .  For Ce(E, R) potentials, Gibbs measures exist and are unique. 

It is clear that  cohomologous functions have the same Gibbs measure. Take f E 

C+(E,  R) and let #I  be its Gibbs measure. To describe p it is enough to specify 

its projection to E+. To this end consider the transfer ope ra to r / : / :  Ce(E +) -+ 

co(E  + ) 
= 

The structure of the spectrum of the transfer operator is described by the Ruelle- 

Perron-Frobenius Theorem. Namely, the leading eigenvalue of s  is simple and if 

h / i s  the corresponding eigenfunction and u / i s  the corresponding eigenmeasure 

then # f  ---- h /u f .  
A function f is called n o r m a l i z e d  if s  -- 1. Given S there is unique 

normalized ] such that f ~ ] .  Let f be normalized and w = w l w 2 . . ,  w,~ be an 
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admissible word (that is Aw,w,+l -~ 1). The map vo(w) = ww is defined on a 

subset of E +. On this subset the following equation holds: 

d#f(w(w) ) _ exp[fn(w(w))]. 
d~(~) 

Gibbs measures are exponentially mixing in the sense that  VA, B C C0(E) 

(3) I~s (A (/~ o an))  - #f(A)#f( /~) l  _ Oonst enllAIlellBII0 

for some ~ < 1. 

2.2. BRIN GROUPS. Here we review Brin theory of compact group extensions 

([13, 10, 11]). We include some proofs to make this paper more self-contained 

and also because later on we shall use sinfilar methods to obtain a quantitative 

version of the results of this subsection. For different expositions of Brin's theory 

see [BW, PP2]. 

Let a: E -+ E be a topologically mixing subshift of a finite type. We consider 

on E a Gibbs measure #S with potential f E C0(E,R). Let G be a compact 

connected Lie group, X be a transitive G-space and dx be the G-invariant prob- 

ability measure. We assume that  (G, X)  is a presentation in the sense that  no 

normal subgroup of G acts transitively on X. 

Let M = E x X. We denote by Ck,o(E) (Ck,o(E+)) the space Co(E, Ck(X)) 
(C0(E + ,Ck(X)) ) .  Let v E C0(E,G) be a Holder continuous function. Form a 

skew product T: 2t4 --+ M 

T(w, x) = ((~w, T(W)X) 

and let, d# = dpfdx. For w C E introduce stable and unstable sets: 

W ' ~ ( w ) = { w : 3 n o : w , = w ,  for i > n o } ,  

W ~ ( w ) = { w : 3 n o : w , . = w ,  for i_<no}. 

Define Tn(W) = T(a~--lW)... T(aW)T(W). For w e W~(w), let 

(4) As(w,w)  = l im TNI(Tu)TN(03) 
N--+o~ 

and for w E WU(w), let 

(5) A~(w,w) = lira TN(o'-Nuy)TNI(o'-NoJ). 
N--~a~ 

Now set 

(6) 

(7) 

w ~ ( ~ , x )  = { ( ~ , ~ )  : ~ e w ~ ( ~ ) , y  : z s ( ~ , ~ ) x ) ,  

wu(~,x) = { ( ~ , . v )  : ~ e w ~ ( ~ ) , y  = ~ u ( ~ , ~ ) ~ } .  
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I t  is easy to see tha t  dist(Tn(w,x),Tn(w,y))  -4 0 as n -+ + r  exponent ial ly  

fast if (w,y) E WS(w,x) and dist(Tn(w,x),Tn(w,y))  -+ 0 as n --+ - o c  ex- 

ponential ly  fast if (w,y) C WU(w,x). By a t - c h a i n  in E we mean  a set of 

points  w~ ,w n such tha t  for all i either w i+1 E WS(w i) or w i+1 E W~(wi). 

An e - c h a i n  is defined by also allowing tha t  w ~+1 = anw ~. We can also define 

e- and t-chains in 2~4. As usual we say tha t  (w~ (w",xn) covers 

W = (w~ By (6) and (7), for any such chain we have x ,  = g(W)xo, 
where g does not depend on x0. We also say tha t  any chain connects its end- 

points.  If  an (e- or t-) chain W has w ~ = w" = w we say tha t  W is a closed chain 

a t  w. 

Definition: The  e r g o d i c i t y  g r o u p  Fe(w) is the subgroup of G genera ted (set- 

theoretically) by g(W) for all e-chains W at  w. 

Definition: The  t r a n s i t i v i t y  g r o u p  Ft(w) is the subgroup of G genera ted by 

g(W) for all closed t-chains W at  w. 

We refer to Fe and Ft as the B r i n  g r o u p s .  Note tha t  the Brin groups can be 

defined (and used) in the much more  general f ramework of extensions of par t ia l ly  

hyperbol ic  sys tems (see [34]). I t  is interesting to see how much of the theory 

described below works in tha t  setting. 

PROPOSITION 2.1: For any e-chain W = (w~ n) 

= and = g(W)F~(w~ 

Proo[: I t  is enough to consider two-point  chains W = (w,&); the general case 

follows by induction. If  & E W S ( w ) [ J W ~ ( w ) ,  we note tha t  if V is a closed t- 

chain (e-chain) at  w then &V& is a closed t-chain (e-chain) at  &. Thus  F,  (&) D 

g(W)r , (w)g- l (W) .  Similarly F , (w)  D g-I(W)F,(&)g(W). I f  & = a n t  then Y 

is a closed chain at  w iff (rnW is a closed chain a t  &. | 

As any two points  in E can be connected by a t-chain, we get the following 

consequence of the preceding result. 

PROPOSITION 2.2: (i) Vwl,w 2 Ft(w 1) is conjugated to Ft(w 2) and Fe(w 1) is 

conjugated to Fe(w2); 

(ii) Vw Ft(w) is normal in Fe(w). 

If  we make a change of coordinates  

(8) ( J , . ' )  = 



Vol. 130, 2002 COMPACT GROUP EXTENSIONS OF HYPERBOLIC SYSTEMS 165 

then in the new coordinates T(w', x') = (aT', T'(W)) where 

~,(~) = ~ ( ~ ) ~ ( ~ ) ~ - 1 ( ~ ) .  

P ' s  are t rans formed according to the following rule. 

PROPOSITION 2.3: In the coordinates (w', x') = (w, c~(w)x) 

r'~(~) = ~ ( ~ ) r ~ ( ~ ) ~ - ~ ( ~ )  and r~(~) = ~ (~ )r~ (~ )~ -~ (~ ) .  

Definition: T is called r e d u c e d  if Vw l, w 2 there is a t -chain W connecting w 1 

to w 2 such tha t  g(W) = id (the identi ty element in G). 

PROPOSITION 2.4: I f T  is reduced then 

(i) r t (w)  and re(W) do not  depend on w; 
(ii) i f W  is a t-chain (e-chain) then g(W) �9 Ft (g(W) �9 r~) ;  

(iii) ['~/rt is cyclic. 

Proof: (i) follows immedia te ly  f rom Proposi t ion  2.2. 

(ii) Let W = ( w ~  w n) be a t-chain (e-chain) and let V = (cb~ c~ m) be a 

t-chain wi th  c~ ~ = w ~, ~/m = CO0, g ( V )  ~- id; then 

g ( ( ~ o . . . ~ n ~ l  . . . ~m) )  = g ( w ) .  

(iii) By (ii), if w2 e W~(w 1) then As (wl ,w  2) e Ft,  A~(awl,aw 2) C Ft. 
But  A~(awl,c~w 2) = r(wl)A~(wl,w2)T-l(w2). Therefore  if w 2 �9 WS(w l) then  

T(W l) -- T(W 2) m o d F t .  The  same is t rue if w 2 �9 W'~(w 1) and hence if w 2 can be 

connected to ~d 1 by a t-chain. | 

PROPOSITION 2.5: Every T can be reduced by a change of coordinates (8). 

Proof: Clearly T is reduced if every w can be connected to some fixed w ~ E E 

by a t-chain W with g(W) = id. Now choose any chain W(w) connecting w to 

w ~ such tha t  g(W(w)) is continuous and set a(w) = g(W(w)) in (8). | 

PROPOSITION 2.6: (i) T is ergodic ifff'e acts  transitively on X; 
(ii) T is weak mixing iff [ ' t  acts  transitively on X.  

Proof: We prove the weak mixing criterion. Ergodici ty  is similar but  easier. By 

Proposi t ion  2.5 we may  assume tha t  T is reduced. 

(a) Let  Ft be t ransi t ive and h(w, x) be an eigenfunction of T. I t  follows f rom 

[38] t ha t  we can assume tha t  h is continuous. Then  it is easy to see tha t  it 
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is constant along WS(.) and W~(.). Thus VaJ,x Vg C Ft, h(w, gx) = h(w,x) .  

Since Ft is transitive, h(w, x) depends only on the base point and since a is 

weak-mixing, h is constant. 

(b) Assume that  Ft is not transitive. If F~ is not transitive then any F~- 

invariant function on X lifts to a T invariant function on A4, so we may assume 

that  Fe is transitive. Let J{ be the algebra of the sets of the form E x Z where 

Z is Ft invariant. Then T preserves .4 and the action of T on .4 is a factor of 

a group shift on K = F~/Ft. Thus it has pure point spectrum and so T is not 

weak-mixing. | 

By a theorem of Rudolph ([43]) any weak-mixing compact group extension of 

Bernoulli shift is Bernoulli shift, therefore, we get 

COROLLARY 2.7: I f  G is compact then T is Bernoulli iff Ft acts transitively 

on X .  

Remark: Since in our case T is Holder continuous we do not have to use the deep 

result of [43] to obtain the last statement.  In fact straightforward arguments of 

[36], [14], [42] would suffice. The later approach is similar to one used in the 

present paper to derive estimates on correlation function. 

It  is known that  if G is semisimple then ergodicity implies weak mixing. Note 

that  this is a consequence of the following statement (we need part  (a) here while 

part  (b) will be used later on). 

PROPOSITION 2.8: (a) Let X be a transitive space of a compact connected 

semisimple Lie group G, H1 C H2 be subgroups of G. Assmne that H1 is normal 

in H2 and H2/H1 = T d x F where F is a finite group. I f  H2 acts transitively on 

X then so does Hi.  

(b) Let X be a transitive space of a compact connected Lie group G, H C G 

be a closed subgroup. Then H is transitive on X iff it is transitive on X/[G,  G] 

and X /  Center(G). 

Proof." (a) We may assume that  H1 is connected by passing to its identity 

component. Also, since X is connected we may assume that  so i s / /2  and hence 

that  F = {id}. Now T d = H2/H1 acts on Y = H I \ X  and, because this action 

is transitive, Y - T m for some m. So X and hence G fiber over T m. Therefore 

m -- 0 as claimed. 

(b) By the same argument as before we can neglect finite covers and assume 

that  Center(G) N[G, G] = {id}. Since X is a transitive G-space it equals G/F for 
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some subgroup F of G. Take g E G. As H is transit ive on X/[G, G], 3h E H, ~/E 
F , f  E [G, G] such tha t  hg7 = g'. Since H is transit ive on X~ Center(G),  we 

can apply (a) to conclude tha t  [H, H] also acts transit ively on a/r Center(G).  

Equivalently, the left action of r Center(G) on [H, H]\G is transitive. Hence F 

acts transi t ively on [H, HI C e n t e r ( a ) \ G .  Again by (a), IF, F] acts transit ively on 

[H, H] Center(a)/G. Thus 3h'  E [H, H], "y' �9 IF, F] such tha t  h'9'3" �9 Center(G).  

But  also h~gr'y ~ �9 [G, G], thus h~9~7 ~ = id. But  h~9~7 ~ = h~hg~/'/, so HgF = G. 
| 

2.3. ONE-SIDED SUBSHIFTS. Here we discuss the reduction of two-sided sub- 

shifts to one-sided ones. 

First,  we show that  by a change of variables we can obtain tha t  T(tO) depends 

only on the future. Given two sequences tOl,032 such tha t  w~ = to2 let [w 1, w 2] 

1 for j < 0 and [tO1 022]2 2 denote their local product ,  tha t  is, [tol to2]j  ___ to3 --  : tO3 

for j >_ 0. For each a E {1 . . . . .  n} choose a sequence ~b(a) such that  &(a)0 = a. 

Let r = [w(tO0), tO]. Make change of variables (8) with 

~(tO) = ~2~(r 

It is easy to see tha t  in the new variables local stable manifolds are flat, tha t  is 

if wjl = wj2 for j _> 0 then A ~,~ ,(w 1 , w21j = id. Thus 

id ~ 1 : As( tO , 022) -~- T'(O31)Z~.kts(O'tol , O-to 2) (T t ( to2) )  - 1  : T ' ( to  1) (T ' ( tO2))  - 1  . 

Hence ~-'(w 1) = ~-'(w2), i.e., ~-' depends only on the future coordinates.  

Now we show tha t  we also can assume that  A, B E Ck,e(E+).  In fact, suppose 

that  for all such functions [PA,B(N)[ ~ O. Take A,B E Ck,o(E). For any 

cylinder Cn,~ = C_,~,o(w3) choose a sequence ~n,3 E C~,j. If H E Ck,e(E) denote 

H (n) (w, x) = H([~no(~), w], T,-~l(w)vn(~,~(~))x); then 

IIH - H(n)l[0 _< Const IIHII~,eOL 

where ]lHl]k,e denotes the norm of H as the element of Ce(E,  Ck(X)). Also, 

[IH(~)o T~[Ik,o <_Const[IH(n)[Io,o(~) '~ 

and H (n) o T ~ E C0(E+).  So 

(9) pA,B( N) = fiA(,.),B(.) ( N) + 0 (  0 n) : pA(n)oTn,B(n)oTn ( N) -k 0(0 n) 

= ON-~O(1) + O ~ ( o n ) .  
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Thus PA,B(N) -+ 0, N ~ oc. 

Let T be reduced and A C Ck,e(E). Given A E Ck,e(.A4) let 

B(w, x) = E[A(Tn(w, x)) - A(Tn(r As(w, r 
n 

Then B E Ck,e(A4), since the derivative with respect to the second variable of 

the n-th term of this sum is exponentially small and 

(10) A - B + B o T e Ck,o(E +) 

(see [47, 37] for more details). 

2.4. AN EXPRESSION FOR THE CORRELATION FUNCTION.  I n  this section we 

provide an expression for the correlation function we shall use later on. By the 

preceding section we can assume that  (E, a) is a one-sided subshift of finite type. 

If w, w are two-sided sequences such that  wi = wi for i > 0, then As(w, w) = id. 

We also assume that  the potential f of Gibbs measure # is normalized, that  is 

(11) E el(W) = 1. 

Let A be the Laplace operator of some G-invariant Riemann metric on X. Let 

]H[x be the space of functions satisfying A f  = A2f, f f(x) dx = 0 and ]HI0 be 

the space of constants. In this subsection we provide a formula for correlation 

function 

= J A ( q ) ~  d#(q). 
11. 

pA,B(n) 

We have 

Let us make the change of variables w = anw, y = Tn(W)X; then by the definition 

of Gibbs measures 

pA,.(n) : f 
r  0 3 = ~ y  

Regard now A, S as functions E -+ L2(X). Denote (Ir(g)f)(x) = f(g-lx); then 

we can rewrite the above expression as 

pA,s(n) = f (s x)B(w, x) d#(w, x) 
J 

where 

O'5~ = ~ 2 Y  
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Finally, decompose A = f A(w, x) dx + ~/'~.;, A~, B = f B(w, x) dx + ~_,~ B), where 

A~(w, .), B),(w, .) E H;,. and write 

= 

where ~ is the restriction of ~ to HA. Then using (3) we get 

= .f A(q) / .(q) d.(q) + + 

A 

2.5. AXIOM A DIFFEOMORPHISMS. Recall that F: Y --+ Y satisfies Axiom A 

if there is an F-invariant splitting TaFY  = E~ @ Eu and constants C, ~ < 1 such 

that  

(a) for any v C E~(x), n > O, IIdFn(v)]l < C~nllvll, 

(b) for any v E E~(x), n > 0, I[dF-~(v)]l ~_ C~[Ivl]. 

We suppose that  the restriction of F to ~F is topologically mixing. We shall 

use the following statement (see [9]). 

PROPOSITION 2.9: There exists a subshift of a finite type E, 0 < 1 and a sur- 

jective do-Lipschitz map p: E -4 ~ F  SUCh that p o a = F o p and if  # f  is the 

Gibbs measure with potential f on Y then P*#I is the Gibbs measure on E with 

potential f o p. 

Thus if Ty: Y • X --4 Y • X is a compact extension with skewing function T, 

we can associate to it the extension T~: E • X --~ E • X given by T~.(w, x) = 

(aw, T(pw)x). Now if P = (p, id) then P o T~ = Ty o P. This allows us to reduce 

the study of Tv to that of T~. 

3. Expanding maps 

3 .1 .  CONTENT OF THIS SECTION. In this section we study compact group 

extensions of expanding maps. We assume that a is an expanding map of a 

compact connected Riemannian manifold M. In this section we use notation 

which is slightly different from that used in the rest of the paper. Namely we 

denote by x points in M. Let (21~/, a) be the natural extension of (M, a). Points 

in /~/wi l l  be denoted by q = (x, if). 

The structure of expanding maps is given by the following result of Gromov 

and Shub [30, 44]. 
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PROPOSITION 3.1 ([30]): Let c~ be an expanding map of a compact connected 

boundaryless manifold M.  Then there exist a nilpotent simplyconnected Lie 

group N and a subgroup F of Aft(N) acting discretely on N such that M = 

N/F .  Moreover, there exist an expanding automorphism a E Aut(N)  and a 

homeomorphism ~ : M --+ M such that a(F) = F and a = ~ - 1  

In particular, the universal cover M of M is ]R d and the action of a on the first 

cohomology group of M has no non-trivial fixed points. 

Given T E C ~ ( M , G )  we define skew extension T: M x X --+ M x X by 

T(x,  ?l) = (ax, ~-(x)~l). Recall the classical fact that  expanding maps always 

have a unique absolutely continuous invariant measure (see [19], for example). 

Multiplying this measure by the Haar measure on X we obtain a smooth invariant 

measure for the compact extension. 

The Brin groups for compact extensions of a are defined using the stable and 

unstable sets exactly as was done in Section 2. We will also consider infinitesimal 

analogues of the Brin groups. In the next subsection we introduce the notion of 

infinitesimal complete non-integrability which is an infinitesimal analogue of the 

property that  the transitivity group is the whole of G. The results of this section 

then could be formulated as follows. 

THEOREM 3.2 (Mixing): Infinitesimal complete non-integrability implies 

exponential mixing with respect to the smooth invariant measure. 

Definition: We say that  T is stably ergodic if for all pairs (~, ~) C2-close to 

(a, T), T~,~ is ergodic. 

THEOREM 3.3 (Characterization): I f  X = G then the following properties are 

equivalent: 

(a) T is stably ergodic; 

(b) T is exponentially mixing; 

(c) T is infinitesimally non-integrable. 

THEOREM 3.4 (Prevalence): Infinitesimal complete non-integrability is generic 

among compact extensions of expanding maps in the sense that the complimen- 

tary subset is a positive codimension submanifold. 

3.2. INFINITESIMAL TRANSITIVITY GROUP. Here we describe an infinitesimal 

version of Ft. For x E M let I)(x) be the span of 

( x ,  - ( x ' ,  
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for all g, if, ~ (if', j are chosen so tha t  (x', ~) �9 WU(x, ~) and (x', ( )  �9 WU(x, ~)). 
Here 03' means the derivative with respect to x r applied to ~'. 

The  plane field h(x) is lower-semicontinuous, tha t  is given x0 there is a 

continuous plane field [l(x) with ~(xo) = b(xo) and ~(x) c b(x). As 

we have 

Au(aq, crq') = T(x)A,,(q, q')T--I(X'), 

[}(ax) D Ad(T(x))b(x). 

So the ergodicity of a implies 

PROPOSITION 3.5: The conjugacy class of b(x) is constant almost everywhere. 

Let [j be a representat ive of this class, F = {x : b(x) is conjugated to b}, 

_F = {x : dimI~(x) = dimb}.  Then  F C F,  F has full measure and /~  is open (by 

semicontinuity).  Also for x �9 _F 

(13) h(ax) = Ad(~-(x))b(x). 

PROPOSITION 3.5: D is Holder continuous on F. 

Proof'. For fixed y, ~, g', 

V(x,v,9,  = o 3  u ) ( x ' ,  u ' ) )  - Au((X, 9)(x',9'))] 

is Holder continuous in x by the general theory of part ial ly hyperbolic systems 

[33] (or by differentiating the product  formula for A~ (5) te rm by term).  If 

Xo �9 P and b(Xo) is generated by {V 3 = V~(xo, y3,y~,~j)}, then for x near xo 

b(x) will be generated by V(x,  Y3, Y3, ~3)" | 

LEMMA 3.7: Let W = (qo, q l , - . . , q m )  be an e-chain with xo,Xm �9 [~ (we write 
q3 = (xd, Y3)); then 

(14) Adg(W)ll(Xo) = b(Xm). 

Proo~ Since b(x) is continuous o n / }  and g(W) depends continuously on W it 

suffices to prove this s ta tement  for a dense set of chains, so we may assume tha t  

x, �9 F .  Therefore it is enough to verify this s ta tement  for m = 1. The case when 

ql = anq2 follows from (13). Also if ql �9 WS(qo), then anxo = a'~xl for some n, 

so 
[l(xl) = Ad(r,71(x~))b(a'Xl) = Ad(r,7*(x~))b(anXo) 

= Ad( rn l (X l )  Ad(rn(Xo))[l(xo) 

= Ad(rgl(Xl)Tn(Xo))[l(Xo) = Ad(g(W))[l(Xo). 
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So it remains to consider the case ql �9 W~(qo). Again it suffices to consider a 

dense set of pairs. By the above proposition we can find an open subset U C N 

and a Holder function a: U x  U --+ GL(~) such that V~, x �9 U b(~) = a(~, x)b(x). 

Moreover, we can assume that a is close to id by shrinking U if necessary. Now, 

we may assume that yn ~ y~ �9 U for infinitely many n since this condition is 

satisfied on a dense set of pairs. Then 

[}(Xo) = Ad(Tn(y~ ~ = Ad(rn(Y~176 lyn)~(yn)~ 
0 0 1 --1 1 = Ad(T,(y,~))a(y~,y,~) Ad(~-u (yn)i}(xl). 

Passing to the limit as n -+ cc we obtain the statement required. I 

Now semicontinuity implies 

COROLLARY 3.8: I f  in the previous lemma Xo C F, Xm C M then 

Ad g(W)I~(Xo) D O(xm). 

In particular, F = F. 

Let 0(x) be the subalgebra generated by b(x) and H(x)  be the corresponding 

subgroup. 

COROLLARY 3.9: Fe(x) C Norm(H(x)) .  

COROLLARY 3.10: I f  either T is reduced or Fe = G, then H(x)  =- H almost 

surely and always H(x)  c H. Also b is an ideal and hence ~ = O. 

LEMMA 3.11: I f  Fe = G then P--~t = [-I. 

Proof'. By definition b C L(Ft) without any assumptions, so H C Ft. Locally 

we can always make a change of variables (8) so that in a neighborhood U(x0), 

Vx, x' 3y, y' such that Au((x, y), (x', y')) = id. (Under this change of variables 

[~(x) gets replaced by a conjugated subspace, but by our assumption b(x) is an 

ideal and so this change of variables does not affect [~(x).) 

Thus if q is close to q', then Au(q,q') C H. (To see this, join q and q~ by a 

smooth curve -),(~); then 

o_ �9 

As M is connected, Au(q, q') is always in H. As in the proof of Proposition 2.4 

we get T(X) -- T(x')(mod H).  Thus if q' �9 WS(q) then As(q, q') = T-n(X')T,~(X) 

for some n and so As(ql, q) belongs to H. I 

Let g denote the Lie algebra of G. 
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Definition: Call T infinitesimally completely non-integrable if [~ = g. 

3.3. COMPLETE NON-INTEGRABILITY AND STABLE ERGODICITY. Here we be- 

gin the proof of Theorem 3.3. In this subsection we work with principal exten- 

sions, that  is we assume that  X = G. First we record the following consequence 

of Lemma 3.11. 

COROLLARY 3.12: I f  G is semisimple, then T is ergodic if and only i f  H -- G. 

LEMMA 3.13: I f  G --- ~ ,  then T is stably ergodic if  and only i f  H : R d. 

Proof'. (a) If H = ]R d, then Ft -- "~ and so T is ergodic. Also, if T is close to T 

then by the semicontinuity of D, H ( T )  -- IR d as well and so T is ergodic. 

(b) Let H ~ R ~. We want to show that  T is not stably ergodic. We represent 

as ~ -- ]Rd/z d. Without  the loss of generality we may assume that  

(15) . N z  {0} 
since this could always be ensured by a passage to a factor group. Denote E t = 

Ra / H. Denote 

OO 

(16) O ( x , g , ~  = ~ (C9(d,,-~ ~ T)(Y3)" 
j = l  

Here, in (da-~)g we take the local branch of a - j  corresponding to yj. Let 8 '  

be the projection of 0 to E ' .  By assumption 8 '  does not depend on g and so it 

defines a 1-form on M. Being the uniform sum of closed forms (locally we can 

invert a and write 8 '  = l i m n _ ~  ~-~=1 d(T' o a - 3 ) ) ,  8 '  is closed (T' denotes the 

image of T in E ' ) .  Also, from the last identity it is clear that  

(17) a*(O')  = O ' +  d(T'). 

Hence the cohomology class of O' is c~-invariant. Since 1 r Sp(a*) (see Proposi- 

tion 3.1 and the discussion thereafter), O ' is closed, O' = dc~ ~. Hence the previous 

equation reads d ( a ~ o a - a  t) = ~_,. Let a (x)  be some preimage o f a  ~ in R d. Let x0 

be the fixed point of a. Let us make a change of variables (x, t) --+ (x, t - a(x)) .  

After this change r is replaced by ~-* where T*(x) - ~'*(x0) E H / Z  d. In particu- 

lar, by (15) T* is homotopic to a constant map, so it can be written in the form 

T* = ~(~*) where ~*: M ~ ]~d Now by a small perturbat ion we can pass from T 

to ~, where ~ = r(~-), where T E T(q0) + /~, where ~'(q0) has rational component 

and dim(/:/) = dim(H) a n d / ~  is generated by rational vectors. But then T(~) is 

not ergodic. | 
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LEMMA 3.14: Complete uniform non-integrability is equivalent to stable ergod- 

icity. 

Proof." (a) If h = 9 then T is stably ergodic as in the proof of Lemma 3.13. 

(b) Let T be ergodic. Then b is an ideal in 9 and, since Ft -- H, we see that if 

r 9, then h/[g, 9] ~ 9/[9, 9]. But in this case the maximal abelian subextension 

Ta of T is not stably ergodic. So arbitrarily close to Ta there is a non-ergodic 

extension 2b~. But since Ta lifts to M x G so does Ta. I I  

3.4. DECAY OF CORRELATIONS. In this subsection we prove Theorem 3.2. Let 

# be the smooth invariant measure for a. Let 0 = 1/minx [Ida(x)l [. Denote by 

A0 the minimal eigenvalue of A on X. 

In view of (12) we have to find bounds for the transfer operator 

(&~q)(x) = ~ d(~).~(~(y))/~(y) 
eTy-~x 

where e I(y) = d#(y) /d#(x) .  We need an auxiliary estimate. 

PROPOSITION 3.15: Given a branch y = a-'~x the following estimate holds: 

d-,-o(~) I < o 
dx 1 -  1-011"111" 

Proo~ 

n - 1 d T  d a  3 Y ~ - 1 0 

-< _~olld--gTyyll_ dx <- Y~llrlllOJ <- 

Let 

(18) 

Introduce a norm 

i A )  n = 4 0  - - +  

II/~11~ = max (ll/tllo, nllD/~ll~ 
A " 

The following estimate is analogous to [21]. 

0 n < r _< IrUll~. PROPOSITION 3.16: I fn  ~o �88 then W 0 IIZ:~/~II~ 

Proo~ We have 

I I .&"f i l lo _< d"(~')ll~llo ~ I1~11o11,~111 = II/~11o. 
o'ny~x 
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Now let us estimate the derivative. 

175 

d(f-'~n~I)dx <- E J~(Y) ~y d~x x IIHII 
o'ny~x 

I ~, dx ) l dy dx J o'ny~T o'ny-~C 

(19) <-0nl]fllll/~l[~ 1--~A[]vll l l /4l l~176 d-~xH o 

(here the inequality [[Tr~(Z)[] < A]IZI[ was used to estimate the second term). 
Thus 

d ( s  < (On, , f , ,+ )~ l_~ , [~ . , , ) , , /~ , ,o+On d/~ 
~-xo"  ' dx - 

We need an auxiliary estimate. 

LEMMA 3.17: There are constants nl,so, e~,E2, an open set U C M and 

< Ile~(x)l I < 1 and, for an r vectorfields e l (x ) ,e2(x) , . . . , e l (x )  such that ~ _ 
N >_ nl, there are inverse branches 

Yll(X),  Yl2(X), Y21 (X), Y22(X),..*, Yll(X), Yl2(X) 

of a N such that V/J3j : V/I* : ]IH* - HI[ -< eo the following is true. Let 

e~(x) = ~[o~j (~(yj~(~)~;~(yj~(~')))~,_~]; 

then 
E1A < JJ[e~(x) - e~(x)]/~*lJ _< E2~. 

Proof Fix Xo ~ F. By assumption 3Z1, Z2 , . . . ,  Zl E ~)(xo) which span L(G). 
Let D denote a Casimir operator. As ~r~(D)/4 = /~2/~ 3j : Hr~(z3)/41l > e3,~. 

Since always 1[Try(Z)/411 _< AIILIIIIHII we have 117r~(2)/~*11 _> ~A for 2 close to 
Z 3 a n d / t *  close to /4 .  Now 3 ~  1, ~j2, e3 such that 

lim O~l(XO ) - O~(xo) = Zj. 
N--~(x) 

Thus if N is large, ej(x) is close to ej and x close to xo, then O~(x)  -O j2 (x )  is 
close to Zj. | 

We need more notation. Let n2 be a number such that a ~ U  = M. Define 

(20) ~ = sup II d ~ 2  e~ I Ic2, 
3 
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(21) 

(22) 

(23) 

Let  e4 be a number  such tha t  

(24) 

16E + 8 
N __ - - ,  

E1 

4 
6 -  

N20" 

1 
C4 < -- 

4 

and if Z1, Z2 are two vectors such tha t  

and 

then 

ll2~11_ 3112211 

1121 + Z211 -> ]]21]] + (1 - ed)]]Z-'2[I 

2, 22 (25) IJ~fl II~ll <- 6. 

Set no = ne + n3, where a number  n3 _> n l  is such tha t  the following inequalities 

hold: 

0 ~~ 1 
(26) A---~- < 

1 
(27) NOn~ <- Sty' 

In 2 
(28) NSO '~~ < ~ - ,  

1 
(29) NSO"~ <- 32---~" 

. (~3) 
Let w(x) be a branch of a -n2:  M --+ U and set zjk = Yjk ow.  

We now follow a construct ion of [21]. Let  us recall it. Divide M into "cubes" 

of d iameter  6/A: M = [.JtCt(A). (Here, by cube in M we mean an image of a 

cube in R d under the covering map.)  

We now want to improve upon the est imate of Proposi t ion 3.16. Let 

/CA ---- {R: M --~ R :  IlO~lnRII <_ A}. 
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LEMMA 3.18: There exist e, ~ so that for given A there are linear operators 
Afl(A),Afa(A),...,N~(~)(A) preserving IC2~ and such that: 

(a) For R E IC2~ 

f ]x~RI2 d. < (X - ~) f R2 d~. 

(b) If [/4(x)] < R(x), lID~q(x)ll < 2•AR(x) for some R �9 /C2x then there exist 
j = j(H, R) such that 

(30) I ~ ( x ) l _  (N~(R))(x) 

and 

(31) IlD(s II -< 2~A(XjR)(x). 

To prove this lemma we need several auxiliary estimates. 

Take a cutoff function Ct (x) satisfying 

(a) supp Ct �9 Ct; 
(b) Ct(x) = 1 if x �9 Ct and dist(x, OCt) > g/8A; 

(c) I1r < c~.  
Set Ctjk = Ct o z~-~. If J is a set of indices let Cj = ~--~Xtjk)~J Ctjk. Set 

N(J,~4)R = s ( (1-r162 Call J N-dense ifVt3g �9 J such that  dist(Ct, C~) < 

N6/A. The following result is essentially proven in [21]. 

PROPOSITION 3.19: (1) 

(32) Af (J'~4) : K:2:~ -4 K:2~,. 

(2) I f  I lHll(x) < R(x), IID~qll(x) < 2,~AR(x), then 

(33) [ID(s176 < 2~Xr 

(3) 3~5 such that i f J  is N-dense and R �9 K:2?,, then 

f (Af(J'~)R)2d# < (1-ch)  f R2d#. 

Proof." (1) and (3) are established in [21] (note that (1) and (3) deal with 

functions M -+ 1~ rather than M -4 HA(X)). (2) follows from (19) and the 

second condition of Proposition 32 by the same calculation as in Proposition 

3.16. | 

We want to find N-dense J so that Af(J,e')R satisfies (31). Let 

~jk eS~o r ) 
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Call Ct good if 3jo(t), ko(t) so that on Ct, IlPjoko~ [I <- 1. 

Let C = Udist(Ct,Ct)<N6/i,k I Ct,. 

Definition: If 4) is a function on a set U, let 

PROPOSITION 3 . 2 0 :  

(a) Vx, x' E C, Yj, k 

(34) 

(b) Fix j, k. Then either 

(35) 

o r  

(36) 

Oscu 4) = maxu 4) - minu 4). 

Let H, R satisfy II~qll < R, II/~'11 < 2~AR, R E 1C2~. 

1 <  R(zjk(x)) < 2. 
2 - R ( z j k ( x ' ) )  - 

II~q(z~k(x)ll _< ~R(z~k(~)) Vx EC 

Vx EC. 

Then Vx E C 

Isr. J. Math. 

&zMx)) &z,k(~')) < 2~. 
I I~ (z jk (x ) ) l l  I I&z~k(x ' ) ) l l  - 

(a) We have [ d l n R [  _< 2A0 TM. Thus 

Oscc (ln R) < 2)~ono __N~ = 2N~OnO" 
- 

By (28) the oscillation of in R on C is less than in 2, as claimed. 

(b) Suppose there is a point ~ such that 

If/t(~jk(~)ll _< ~R(zjk(~)). 

(37) 

and 

(38) 

Proof'. 

((c)  Moreover, if (36) holds then 
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Thus Vx C C 

N5 - ,~o 
(39) i]/4(zgk(x))]] _< []H(zjk(x))]l + ~-4~)~R(zjk(X))O 

<_ + 4,~n~o n~ R ( z M ~ ) )  <_ gR(zjk(~:)) 

(the last inequality holds since (29) implies that 4e;NhO n~ < ~). 
But 

~R(z,k(k)) < ~R(zjk(x)) 

by (a). 

(c) (37) follows from (39) and (27). (38) follows from (37) because 

~(z~k(x)) ~%k(x')) 
II/~%~(x))ll II~(zjk(x'))ll 

/~%~(x)) ~(zjk(x')) + ~(zjk(~')) ~(zjk(x')) 
< I 1 ~ 1 1  IIH(zMx))llll bl~q(zjk(x))ll II~q(zjk(x'))ll 

_ ~ - ~  , L i m z ~ a x ) ) - B ( z ~ k ( x ) ) l l  < 2~. i 
< 5 + IIH(Zjk(X))lIlIn(zJk( x ))ll 

LEMMA 3.21: Vt 3t' such that Ct, is good and dist(Ct,Ct,) < Nh/A. 

1/4 Proof: If for some jo, ko alternative (35) holds, then I[pjo,ko(X)[] <_ 1, so we may 

assume that  (36) is always true. We assume that  no C~ c C is good and get a 

contradiction. So suppose that  Vs, j, k ~x(s, j, k) E C~ such that  r 6k(x(s ,3,  k)) > 
1. Take some Xo C C and choose Jo, ko such that R(Z3oko(Xo) ) is the smallest. 
(34) implies that Vx, j, k 

R(Z~oko(~)) _< 4R(zjk(x)). 

Let M3k(x) = H(z~k(X)) / l l~I (z jk (x) ) l l ,  g ( x )  = 7rA(Tno(Z3oko(X)))]~joko(X). (35) 
and (25) now give 

117r~(T,~o(Zjk(x(t, jo, ko)))~Ijk(x(t, jo, ko)) - ff[(x(t, jo, ko))ll _< 8. 

Proposition 3.15 and (38) now imply that Vj, k 

Oscco (lrx(rno (z,k(x)Mjk(x) < E5/2, 

so Vx e C~ 

(40) 117r~,(7". o (zjk(x))l~I,k(x) - / 4 ( x ) l  I < E5 
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where 

E : 2(1_~0 0 + 1) 

by (37) and Proposition 3.15. Since s is arbitrary this holds for all x 6 C. Hence 

Vx, x' 6 C Vj 

II~(~') - ~(~o(Zj , (~ ' ) )%~(~j~(~)))~(~) l l  < 
II~(x') -- 7rA(Tno(Zjl(Xl))l~/ZJ l(xt)ll -~-IIJ~'~J I ( x ' )  - -  'IrA(T:-I(zJ l e x ' ) ) ) J ~ ( x ) I I ' .  , .u - - - - -  - - . ,  

The first term here can be bounded by E6 while the second one is less than 

II~ji(x ')  - -~,1(~)11 + II-~w~(~) - %~(zwl(~)))-~(x)ll < (E + 1)6. 

Hence 

II/~(x') - "KA(Tno(Z31(X'))Tnol(Zjl(X)))K(x)[[ ~ ( 2 E  + 1 ) 5 .  

By the same token 

I IK(x ' ) -  ~(~,o(Zj2(x'))%l(zj2(x)))g(x)H < (2E + 1)6. 

Therefore 

II [7(A(Tno(Zjl(Xt))T:ol(Zjl(X))) -- 7~'k(Tno(Zj2(Xt))Tnol(Zj2(X)))] /((x)ll 
(41) _< (4E + 2)5. 

Now let j, ej be as in Lemma 3.17 wi th /~  =/~(xo) .  Set ~j = da"2ej and let x 

be obtained from x0 by shifting along the flowlines of e3 on distance N6/A. Let 

x(t) be this flowline. Let 

~q(t) = [ ~ ( ~ . o ( Z ~ ( ~ ) ) % ~ ( z , l ( ~ o ) ) )  - ~(~.o(Zj2(~))%i(zj~(xo)))]  ~(xo).  

Then/~(0) = 0, 

( a ~ ) ( 0 )  = [ o ~  - o ,~ ]  ( ~ ( x o ) ) ~ ( ~ o )  

and (Ot2H)(t) = 7r~(Y(t))K(xo), where Y(t) is a second order differential oper- 

ator and IIY(t)ll <_ Const. So 

(42) 

Hence 

(43) 

tl(0&q)(t)ll  < d ~  ~ 

= ~ [0~ - Oj~] (w(xo))K(xo) + r 
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where r < C(N52). Hence 

(44) H ( ~ - )  > N h e l - C ( N h )  2. 

Now by (21), g6e~ >_ (16E + 8)5, whereas by (23), CN252 = 45. Thus (44) 

contradicts (41), which proves Lemma 3.21. II 

Proof  of Lemma 3.18: Set J = {(j0(t) ,k0(t) , t)  : Ct is good}. Then Af J'~" 

satisfies conditions (a) and (b) of Lemma 3.18 and so this lemma is established. 

1 

Proof of Theorem 3.2: Define recursively 

R0 = IIA~I]~" 1, R~+I = AfJ(R~'L~"~ 

then Ilgx~~ < R~(x) and so 

1 

< (1 - e)~ I 

3.5 .  CHARACTERIZATION OF EXPONENTIAL MIXING. In  this subsection we 

again assume that X = G. We will finish the proof of Theorem 3.3 by establishing 

the following result. 

PROPOSITION 3.22: If X = G and T is exponentially mixing, then it is 
completely uniformly non-integrable. 

Proof: Assume T is ergodic but [} ~ it. We must show that  T does not mix 

exponentially. Let g = gl @ 92, where gl is the center of t~, g2 = [g, [I]. Since [~ is 

an ideal in fl and H contains [G, G] by Corollary 2.6, we see that b = ~@g2 where 

~ 91. In this case we show that T has poor ergodic properties even on G/[G, G], 

so we can assume from the beginning that G = T t = R d / z  g and ~ A Z  d = {0}. 

We can regard ~ as a subspace of ]R g. Let P: M • ~ --+ T d be the natural 

projection. The proof of Lemma 3.13 shows that  we can obtain T(X) ---- ao + a(x), 
(~(x) �9 ~ by a coordinate change. Let A(x,t) = r B(x,t) = r where 

r162 _> 0, f r  -- f r  = 1, suppr  C B(xl,~),  suppr C B(x2,c), 

I]r 11r < c-N.  If T were exponentially mixing, there would be a constant C 

such that  f A(q)B(TCInO/~)q) d#(q) > 0 and therefore PB(Xl, ~) N 13(x2, ~) (= 0. 
Thus p(TCln(U~)P-I(xl) ) is a 2~-net in T ~, i.e., p(Tc'n(W~)B(xl,2c)) -- T d. 
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However, the pullback of this set to R d is contained in a 2c neighborhood of the 

ball in Cao ln(1/r +~ centered at Cao ln(1/r +x0 and of radius Const a0 ln(1/e). 

So its volume tends to 0 as c ~ 0, a contradiction. Hence T does not mix 

exponentially. | 

3.6. PREVALENCE OF COMPLETE NON-INTEGRABILITY. 

prove Theorem 3.4. 

PROPOSITION 3.23: If  

In this subsection we 

(45) r 'e/Center(G) = G~ Center(G) 

and 

(46) b/[o, ~] = g/[g, o], 

then ~ = g. 

Proo[: By (45), If'e, Fe] = [G, G] so O is [a, G] invariant. Applying Lemma 3.11 

to G~ Center(G) we obtain h~ Center(g) = 9/Center(9) and, by [G, G] invariance, 

[g, g] C [. This together with (46) implies that b = 1~. | 

Proof of Theorem 3.4: By the above proposition we need to show that both (45) 

and (46) are violated at most on a manifold of a positive codimension. 
(45): We can assume without loss of generality that G is semisimple. Let 

ql and q2 be periodic points of periods nl  and n2 respectively and W be some 

t-chain joining ql and q2. Then 

Pe(ql) D< {Tnl(ql),g(W)'rn~(q2)g-l(W)} >.  

But the set of pairs (gl,g2) E G • G such that < gl,g2 >5 G is an algebraic 

submanifold of positive codimension [25]. (Recall that  < gl,g2 > denotes the 

subgroup generated by gl and g2.) Thus (45) is true generically. 

(46): Here we can assume without loss of generality that G = ~ .  Denote 

X! --d v(g,  vy, x) = y'), f ) )  - zxu (( . ,  

(see Subsection 3.2). To show that generically O(q) = Ra, it suffices to show that  

(always) for any x E M 

d V ~  
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But 
dV ~ 

= x ,  - x ,  

where 0 ( % . . . )  is defined by (16). Now let U be a small ball in M and y, ~ be 

two sequences such that  the preimages of x corresponding to y visit U exactly 

once (say xj = a-3x) and no preimage of x corresponding to ~) visits U. Let 

57 = r where supp r C U and ~' C R d. Then ~(~ ' ,  if, ~, X))(~T) = (0o-~r 

and such vectors span ]R d. | 

4. Subshifts  of  finite t ype  

4.1. CONTENT OF THIS SECTION. In this section we study mixing rates of 

compact group extensions of one-sided subshifts of finite type. 

The key notion of this section is that of Diophantine subset discussed in 

Appendix A. To state our results we need some auxiliary notation. If w ~ is 

a two-sided sequence, let Ft(w~ 12) be the set {g(W)} for all t-chains W = 

(wl ,w l , . . .  ,wt), w 1 = w ~ such that l < 11, and i f J  +1 E W~(w 3) then (al2wJ+l)+ 
= (al2wJ)+, and if w 3+1 C W~(w j) then (a-12wJ+l)_ = (a-12J)_ ,  where 

w+ (w_) denotes {wj}j_>o ({wj}3<o). 

THEOREM 4.1 (Mixing): I f  for some w ~ 11,12, Ft(w ~ 11,12) is Diophantine, then 

VA, B E Co,k(E +) 

(47) IPA,B(n)I <_ Const IIAIIkllBl[o , 

where j~(k) -+ cxD as k -+ ~ .  

THEOREM 4.2 (Characterization): I f  (47) holds, then Ft(w~ is Diophan- 
tine for any w ~ for large 11, 12. 

THEOREM 4.3 (Prevalence): The set Of T'S such that Ft(w, 11,12) is Diophantine 
for large 11,12, contains an open and dense subset of C~(E +, G). 

Remark: This result can be rephrased by saying that a generic skew product 

over a one-sided subshift of finite type is stably rapidly mixing. 

4.2. DECAY OF CORRELATIONS. 

Proof of Theorem 4.1: Without loss of generality we may assume that  f A(x)dx 
= 0. Let 

1[/~1,~ -- max (,I/~ll0, Const L ~  ) ) 
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where L(/~) denotes the Lipschitz constant o f / t  as an element of C0(E +, L2(G)) 
and Const is chosen in such a way that IIs _< 1 for large n (cf. the proof of 

Proposition 3.16) We need the following estimate. 

PROPOSITION 4.4: [[s _< Const [Af' ( 1 -  [A[-~2) n. 

COROLLARY 4.5: IrA E Ck,e and f A(w,x)d#(w)dx = O, then 

(48) IIz:~Al[0 < Const [[Al]an -~(k), 

~ ( k )  ~ c c  a s  k ~ co .  

Clearly this corollary proves Theorem 4.1. | 

Let us first derive Corollary 4.5 from Proposition 4.4 and then return to the 
proof of the proposition. 

Proof of the Corollary: We have 

L(Ax) <_ IIAIrkConst IAI and IIA~llo _ Const IlAIIkl,~l - ~  

where f13 --+ cc as k ~ c~. Using the bound (see [37] or Proposition 3.16) 

L( C'~ I~) <_ Const IAl(Inllo + OnL( H) ) 

we obtain 

if Const is large enough. Hence 

tlc~tr _< Const jar ~1 (1-  f~t-~2) n-~176176 

Also, we always have [[s < [[A,x[Io _< JlAllkllArl-". Thus 

IlC~/Iro_< ~ II,C~'A,,,Iro+ ~ llA~,llo. 
I~r___n�89 ~ l~l>~�89 ~2 

The first term is at most Const [IAIIke -v~ while the second does not exceed 

J'AHk E IAi-/~3 <- C~ [[ANkn-'(k)" i 

I,\l>n�89 ~2 

Proof of the Lemma: Set re(A) = [C1 In ]A[], rh(A) = 

restrictions on C1 will be clear later (see Lemma 4.7). 

m(A) + 12 where the 
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LEMMA 4 . 6 : I f V I 4  such that [IHIl~ <_ 1 ~/34 > O,w C E and m < rh(A) so that 

[I/:~H(w)[[o < 1 - [A[ -~4, then the statement of Proposition 4.4 is true. 

Proof: Repeat the proof of Lemma 3 from [20]. (See also the proof of (1)::~(4) 

in Theorem A.2.) I 

So we have to prove that for/34 large enough the conditions of the Lemma are 

satisfied. So take some H with IIHIl~ < 1. So we assume that 

(49) II(E~mH)(w)llo >_ 1 - IAI  -~4 

for m _< 7h(A) and get a contradiction. Consider two points &,& such that 
am~ = amVz = w. Consider (L:~/4)(w). 

Among other terms it contains 

(49) implies that 

+ > 

(1 - A-34){lelm(c~ I + I. 

Therefore efm (~)Ir~ (Tin (9))/~(O) and e Im (~)~x (Tin (C5))/~(5;) are almost collinear. 
That is 

(50) 11~(~(~))I7(~)  - ~(~m(~))H(~)II <- CA-~, 

[35 -+ cx~ as/34 --~ cx~. Denote by w(m, j )  a one-sided sequence 

(w(m,j))~ J ---- 5 d i _ m .  

Let /-~3 = H(w(m(A), j )) ,  I(J = ~r;~(Tm(;~)(w(m(A),j)))HJ. By assumption SW 
such that  g(W) satisfies (60) wi th /~  =/~0 .  

LEMMA 4.7: I f /~  satisfies (50), then 

(51) IIRJ+I - <- 

where/36 --+ oo as C1 -+ ec. 

Proof: Consider the following two cases: 

(1) If w ~+1 e W'(w/) ,  then applying (50) with & = w(m(A), j) ,  ~ = w(m(A), j) ,  

m = rh(A) we get 
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(2) If w j+l E WS(w:), then 

II/~J+l- Jql]-< c onst 0m(x)-12 ][HII~ _< ~ 0 m ( ~ ) A .  

Using the relation between/4J a n d / ( J  we get 

but 

Isr. J. Math. 

[]KJ - It), (T~ , ) (w(m(A) , j  + 1))7"m(),)(w(m(A,j)))) g~ll -< Const 0"~(~)A, 

rm~)(w(m(A), j + 1))rm(~)(w(m(A, j))) - Au(w ~, w j+l) < Const 0 m(~) 

while II~r~(g) - 111 ~ A, which completes the proof. | 

Adding (51) for all j and using/~l = / ~ o  we get 

I I ~ r x ( g ( w ) ) f :  ~ - gOll < C(/36)A-~6ll, 

where/36 can be made as large as we wish by choosing C1 large, which contradicts 
the Diophantine condition. Hence Proposition 4.4 is established. II 

COROLLARY 4.8: For G semisimple, ergodicity implies rapid mixing. 

Proof: Ft acts transitively on X. Since 

U Ft (w0' ll, 12) 
11,12 

generate Ft(w~ Corollary A.5 shows that Ft(w~ l:) is Diophantine for large 

ll,12. | 

4.3. CHARACTERIZATION OF RAPID MIXING. 

Proof of Theorem 4.2: By the results of Section 2, we can assume without 

the loss of generality that T is reduced. Because T is mixing the only way 

Ft(w ~ 11,/2) can fail to be Diophantine is that p(Pt(w ~ ll, 12)) is not Diophantine 

on [Ft, Ft]\X. Hence we may assume from the beginning that G = X = W d. Fix 

/1,12. If Ft(w ~ ll,/2) is not Diophantine V/3 3r5 : VW 

lexp(2~ri(rh, g ( W ) ) ) -  11 < - -  

In particular (Proposition 2.4) Vw 1, w 2 

[exp(27ri(~5, T(W 1) -- V(W2))) -- 1] < - -  

1 

1 

i~1 ~" 
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Thus 3~ao such that 

n 
Lexp(2 i( , - exp(2 i o)l < z .  

If ~ is large enough this is incompatible with (47) for A(w, t) = B(w, t) = e 2~('~'t). 
| 

This statement has several nice corollaries. 

Definition: Call T local ly  t r a n s i t i v e  if there are w~ such that  

Ft(w~ = X for any Xo E X. 

Let Ta be the maximal abelian subextension of T. 

COROLLARY 4.9: If  T is ergodic, then it is rapidly mixing if and only if  its 

maximal abelian subextension is rapidly mixing. 

Proos This follows immediately from Theorems 4.1, 4.2 and Corollary A.7. 
| 

COROLLARY 4.10: The property of rapid mixing does not depend on the Gibbs 

measure in the base. 

COROLLARY 4.11: IfTa is locally transitive then T E TiM.  

4.4 .  PREVALENCE OF RAPID MIXING. This subsection complements the results 

of Appendix A in the following way. In the appendix we show that Diophan- 

tineness is generic in a measure theoretic sense. However, for toral action, the 

opposite property is topologically generic. Therefore, even though most of fi- 

nite sets are Diophantine, the corresponding constants behave rather irregularly, 

which makes this result of limited value. However, our condition in Theorem 

4.1 involves a much larger group (namely, the group of all closed t-chains). This 

explains why Theorem 4.3 holds. 

Proof of Theorem 4.3: Clearly, it is enough to consider the action of G on 

itself by translations. We again reduce the problem to the toral case. Indeed, 

it follows from the results of Appendix A that for an open and dense set of 

extensions, Ft D [G, G]. Hence we can factor it out and end up with toral 

extensions as claimed. (We could also appeal here to [27] and Corollary 4.9.) So 

let G = ~ d  : ~d/zd" In this case Ft(w) does not depend on w by Proposition 

2.2, so we will move the base point freely. We will consider the simplest t-chains 
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of the f o r m W - -  (w 1,w 2,w 3,w 4) such that w l = w  2 = w  3 = w  4 andw~_ =w~_, 

w~_--w~,w l_- -w 4 , w  2 - - w  3. So we let 

~(wl,  02~, 023,024) = g(021, 022, 023, 024) 
oo 

(52) : E [ T(O'j021) - -  T(o'J022) ~- T(~J023)T(O'J024)]" 
j~--oo 

We will write ~v~ if it is not clear which skewing function is used. Recall that  we 

consider the case T 6 C + (E). The following bound is immediate. 

PROPOSITION 4.12: IfVj, k d(023,02 k) < 9 g then 

~(~1,02~,023,02.) < Conste~NH~ll" 

Proof'. As w~_ = 022, 02~_ = 024, all positive terms in (52) vanish. The first 

non-negative term corresponds to j = - N .  | 

Fix some element a of our alphabet. If no is large enough, we find (d + 2) 

periodic points 021... wd+2 of prime period no such that 0203 = a and their orbits 

do not intersect. Let an  1, a n 2 , . . . ,  an  d+2 be the corresponding words of length 

no. Let ~+ = (and+l)~,  ~+ = (and+2)O_~. Finally, denote by CjN the cylinders 

CjN = C(~)2N+~. We consider perturbations of T of the form 

d or 
(53) ~ = T + E ej E e3'O2l~~ 

j=l  /=1 

with [r -< c. We prove that for any e we can make ~ satisfy the conditions of 

the proposition. We will choose parameters Cjl by induction. Assume that we 

have already defined {Ejl}l<N. Let 

~ j m  = ~_( .~ j )N+~I (~ . j )N+~+ ' j N 2  = ~ _ ( ~ ) N I ( ~ . j ) N + I ~ +  ' 

023 .5[3 = ~_ (OII'~J)N I(oII~J)N ~+, 0.) iN4 _~ ~_ (oH~J)N+II(oII'~J)N ~+ 

(here I is used to mark the place before the zeroth letter). We have 

~ @3N1, jN~, jN3, jNa) = 

~pT(02jN1, 02jN2, 02jN3, 02jN4) _[_ ~T(1.N_D (023N1,023N2, 023N3, 02jN4) 

...L~.r(N,N) (02jN1,02jN2, 02jN3, 02jN4) + ~r(N+L~) (02jN1, 02jN2, 02jN3, 02jN4), 

where the second term corresponds to the summation from 1 to N - 1 in (53), 

the third one corresponds to the N- th  term and the last one corresponds to the 

remainder. Now 
(flr(N+l,oo) (ojjN1, o2jN2, 02jN3, 02jN4) = 0 
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as no 023Nk contains (oHm/) 2N+4. Also 

~T(N.N) (W jN1 , ojJ N2, W3 N3, 023 N4) = C j N~2Nn~ ej .  

Let 

~0~- (a) iN1 , 03 iN2, o3 "~N3, aJ iN4) ~- ~0~.(1,N-1)(02 iN1 , 03 iN2 , 02 JN3, W ?N 4) 
713 N = 02Nn o 

189 

By Proposition 4.12, ~]jN is less than some constant E. So 

~0~'( OjjN1, 023N2, ~djN3, ojjN4) • 02Nn~ (~]jN Jr E jNej  ) . 

The next statement follows immediately by compactness arguments. 

PROPOSITION 4.13: Let d,e be fixed. There is a constant 5 such that we can 

always choose ejN E [-~, 6] so that 

[Vol(~]lg 4- ~lNel . . . .  , ?~dN ~- Cdged)] ~_ 2~. 

Thus ~ and its small perturbations will satisfy 

N o t (  ~p'~ ( O21N I' OJ1N2' wIN3'  ~ ' �9 . ., ~O'~ (ojdN I'  ojdN2' wdN3' a)dN1) 2Nn~ 

(54) > 5 

Also, if ~ is close to ~ then 

(55) I~o~(wJN1, w iN2, w iN3, w3N4)[ <_ 2E. 

We claim that (54) and (55) guarantee that the set 

{~O(~djN1 ,.,jN2 j N 3  , ,jN4"~ldoo 
~ ,~'~ ~ }J jN=l l  

is Diophantine. Indeed, take some ~5. Let K = maxmj .  Take minimal N 
such that E~ 2N"~ <_ 1/lOOdK. Then I(rh, ~o(w iN1, a) iN2,  03 JN3, coiN4))[ ~ 1/50. 

SO in order for exp[2~ri(~, ~O(02?NI,tojN2,0j3N3,0j2N4))] to be close to 1, this 

product has to be small. However, this is impossible for all j .  Indeed, if 
I(rh, ~o(w iN1, w iN2, w 3N3, wJN4)) I < ~ then all the vectors 

~0(023N1, a13N2 ~jjN3, O j i g 4 )  

~2Nno 

are confined to the cylinder whose base has radius 2E and is perpendicular to 

and whose height is 200Edh. If 5 is small enough this is incompatible with (54). 
This completes the proof. | 
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Remark: In the toral case we consider the same perturbation as in [39] but we 

analyze its effect more carefully. In fact, for extensions over symbolic systems it 

is not true that  stable ergodicity implies polynomial decay of correlations. For 

example, let E be the full two shift, G = T 1 and ~(w) = ~ j  ~n~Xc~l~ ~ (w). Then 

if nj grow very fast, we can approximate r very well by locally constant functions, 

so the decay of correlations in this example can be arbitrary slow. Instead, stably 

ergodic systems have the property that  3 %  = 7n(r)  --+ 0, k = k(T) such that  if 

is close to T then 

J P A , B ( n , T ) [  _~ [[dHkHB[[kTn. 

Nor it is true that  rapid mixing is stable. For example, consider the set of T ' s  with 

skewing function locally constant with fixed number of domains of the constancy 

(still G = T1). Then almost all T 's  in this set are rapidly mixing, but the set of 

the transformations not having this property contains a countable intersection of 

open dense sets. 

5. A x i o m  A 

Here we finish the proof of the theorems given in the Introduction. Theorem 1.1 

follows immediately from Theorems 4.1 and 4.2 via the reduction described in 

subsection 2.5. Likewise Corollary 1.3 follows from Corollaries 4.8 and A.6(b) and 

Corollary 1.4 follows from Corollary 4.9. To prove Corollary 1.2 more arguments 

are needed, since a perturbation inside subshifts of finite type can be done more 

easily than for Anosov diffeomorphisms. We shall use the following result of 

Burns and Wilkinson: 

PROPOSITION 5.1 ([17], Theorems 9.1 and 12.1): Let F: Y -+ Y be an Anosov 

diffeomorphism of an infranilmanifold and T be a compact group extension of F 

with X = G. I f  T is stably ergodic then it is locally transitive. 

Proof of Corollary 1.2: If T E Int(gTCG) then, in particular, T E s162 and 

so T C 7r if and only if Te E 7~A~I. So we can assume from the beginning 

that  G = T d. Then we can also suppose that  X = G. So, after all reductions 

we have T(y,  x) = (F(y),  T(y)x) where F is Anosov, Y is infranilmanifold and 

X = G = T d. In this case Proposition 5.1 shows that  T is locally transitive and 

we are done by Corollary 4.11. | 
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6. Applications 

Here we derive some consequences from our bounds for correlation decay. More 

applications will be presented elsewhere [23]. 

6.1. CENTRAL LIMIT THEOREM. 

COROLLARY 6.1: Under the conditions of Theorem 1.1 there exists k such that 

VA E Ck(M)  the sequence {A(Tn(y ,x ) )}  satisfies the Central Limit Theorem 

(GET): 

Proo~ By (10) it is enough to prove CLT for extensions of subshifts of finite 

type satisfying Theorem 4.1 and A C CO,k(E+). Recall [35] that  if T is an 

endomorphism of a measure space (M, ~), then the following conditions suffice 

for CLT: 

(a) E f A(m);~(Tm)d"(m) <- ~ 
n 

and 

(b) ~-~,,(U*nA)(m) converges uniformly, where U* is the dual to 

(UA)(m) = A(Tm).  

In our case, (a) follows by Theorem 4.1 and (b) follows by Corollary 4.5 since 

in our situation U =/2~.  | 

6.2. EQUIDISTRIBUTION OF THE LEAVES. Here we provide an estimate for 

equidistribution of the images of local unstable manifolds under the conditions 

of Theorem 4.1. But first we should pass to functions in C0(E) rather than 

ck,o(r~+ ). 

COROLLARY 6.2: Under the conditions of Theorem 4.1 for any pair  A, B E 

ck,o(rO 
I P A , B ( N ) I  _< CIIAIIk,oIIBIIo,oN -~ 

/~(k)  ~ ~ as  k - +  co .  

Proof." Plug the estimate of Theorem 4.1 in equation (9). | 

COROLLARY 6.3: Under the same conditions 

IPA,B(N)I <_ C]lAl]o,ollgllk,oN -~(kl. 
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Proof: Replace T by T -1. | 

Now we provide a quantitative version of the K-property. Let 

W ~ ( ~ )  = { w : w _  = ~_}. 

On C~o write ([32]) d#(~o) = J(~)a,+(~+)a,_(~_). Denote 

/WI,o~(c~)H= /w;,o~<~) H(w)J(w) d#+(w)" 

PROPOSITION 6.4: //c~ E Ce(E,X)  then 

Proo[: Let r be a cutoff function concentrated on [-1, 1] a. Let Ic denote the 

indicator of C. Set 

A(n,~)(w,x) = Ic-,~,o(co)(w)r 

J(w) ( fx  qh((~P-~(~)x)) dx)  #(C-n,0(w)) 

Then ]lAIl~,o < Constg~e -d and fA(~'~)(w,x)d#(w)dx = 1 + O(0"). Also, if 

(w, x) e supp A (~'~) then 

IB(TN(w, x)) - B(TN([&, wt, c~([~, w]) I < Const(f  n + ~). 

Therefore 

PA(n'~)'B(N) = /W B(TN(w' a(w)))(1 + O(~ n + e)). 

On the other hand 

pA(n,~),B(N) = f B(w, x)d#(w)dx(1 + 0(0 n + e)) + O(Kne-d~/N), 

where 

IPA,B(N)[ 
(56) 3'N = sup IIAII~,ollBII0,k" 

Comparing these two estimates we get 

(57) 

< Const(en+ +O( n  %N) 
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Remark: The above argument comes from [8] (cf. also [24]). 

COROLLARY 6.5: I r a  �9 C0(~, X) then 

I /w~o ~ B(T N (w, a(w))) - f B(w, x)d#(w)dx < Coast [,B,,k,oN -~(k). 

Proof'. Use Corollary 6.3 and equations (56) and (57). 1 

6.3. RANDOM WALKS ON HOMOGENEOUS SPACES. Let X = G/H. Take a 

finite set W = {gl,g2,... ,gd} C G and le t /Y= {Pz,P2,.-.  ,Pd} be a probability 

distribution on W. Consider a Markov chain with the initial distribution dx and 

x,~ = g3x,~_l with the probability P3" Denote by g~ and g~ the projections ofgj  on 

G/[G, G] and G~ Center(G), respectively. We say that xn satisfies C L T  if there 
n--1 is r > 0 such that for any function A e C~(X) with zero mean (~-~j=0 A(xj))/v/~ 

converges in distribution to a Gaussian random variable with zero expectation. 

PROPOSITION 6.6: Our Markov chain satisfies Central Limit Theorem if and 
only if 

(5S) ( w  = c/Center(V) 

and 

(59) {g~ - 9~ } is Diophantine. 

Proo~ (1) Suppose that  (58) and (59) are satisfied. Consider the subshift of 

finite type with alphabet W, transition matrix Ajk -- 1 and measure #(Cwl...wn) 
n = I] j=lPwj- Consider the skew extension with T(w) = gwo. Since T is reduced, 

Fe is generated by {g3} and Ft is generated by {gjgkl}. Thus T is ergodic, and 

by Corollary 4.9 and Theorem 4.1 it is rapidly mixing. Thus, by Corollary 6.1, 

xn satisfies CLT. 

(2) Let x~ satisfy CLT. Then < W > is ergodic, since otherwise there would 
n - 1  exist a non-constant W invariant function A of zero mean and so (~ j=0  A(x3))/n 

would not converge to 0 in distribution. Thus (58) holds. If (59) would fail there 

would exist ml --+ oc such that  

]exp[27ri(ml, (g~ - g~))] - 11 < 1/m I. 

By passing to a subsequence, we can assume that ml+l > ~2v+s Let _ 11~  l 

1 �9 a 

A(x) : Z Qm~l+2 exp[2~rz(rn~'x )1' 
t 
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where el C {0, 1} and x a denotes the projection of x to X/[G, G]. Then 

m~ r+6 

E m(zj) = 71(xo) + etmT+4exp[2ri(ml, x~)] + O(m?r 
j = l  

where ( = (r + 2)(2r + 8) - (r + 6) -- 2r 2 + l l r  + 10 and ~/l depends only on 

el, e2 , . . . ,  ez-1. Thus we can choose e~ in such a way that 

~ .~lm@(Xj) 1 Prob > _> ~ 

and so A does not satisfy CLT. | 

7. Conc lus ions  

Here we describe how the results fit into the general theory of weakly hyperbolic 

dynamical systems and present some open questions related to this subject. 

7.1. MIXING RATES OF SKEW EXTENSIONS OF AXIOM A DIFFEOMORPHISMS. 

QUESTION: IS stable ergodicity (stable rapid mixing and so on) generic in the 
space of compact group extensions of Axiom A diffeomorphisms? 

This question is easier when the set of non-wandering points of the base trans- 

formation is large, for example, when it is connected (see [26]). On the other 

hand, nothing seems to be known if the base is a horseshoe, especially in higher 

dimensions. 

There are also some questions on the optimality of the bounds we have 

obtained. 

QUESTION: IS exponential mixing generic among compact group extensions of 
(say, volume preserving) Anosov diffeomorphisms? 

QUESTION: If  G is semisimple and T is mixing, is it also exponentially mixing? 

More generally, in the case when a non-wandering set of F is large, there are 

not so many situations where we can get an asymptotic of the mixing rate. 

PROBLEM: Construct some examples where correlation functions could be 
computed explicitly. 
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7.2. PARTIALLY HYPERBOLIC SYSTEMS. It is interesting to see how much of the 

theory presented here can be extended to general partially hyperbolic systems 

where the central bundle is generated by the orbits of some symmetry group. 

Examples of such systems include frame flows on compact negatively curved 

manifolds (or products of such manifolds), systems obtained by applying compact 

extension construction several times, e.g., nilpotent extensions, etc. (see [15] for 

more discussion). 

PROBLEM: Generalize the results of Section 2 to compact group extensions of 

partially hyperbolic systems with accessibility property. 

See [34] for some results along these lines. 

More generally, here as well as in [20, 21], we showed how to derive mix- 

ing properties of transversely hyperbolic systems with symmetries from the the 

property of the holonomy maps along short loops (the first result in this direction 

appeared in [18]). One can ask what can be said about more general partially 

hyperbolic systems. The best result in this direction so far is a theorem of Pugh 

and Shub [41] saying that partially hyperbolic volume preserving dynamically 

coherent and center-bunched systems with accessibility property are K-systems. 

In particular, they enjoy mixing of all orders. 

QUESTION: Let f: M -+ M be a map satisfying conditions of Pugh and Shub 

and, moreover, be locally transitive. What can be said about its rate of mixing? 

In the context of skew extensions of Axiom A some results are given by 

Theorem 1.1 and Corollaries 1.2 and 1.3. Similarly one should compare results 
of [16] and [21]. 

In full generality this question seems to be very hard, but an advance in this 
direction would drastically increase our understanding of partially hyperbolic 
systems. 

QUESTION: Does there exist a stably ergodic diffeomorphism which is not mix- 

ing? Could the mixing rate of a stably ergodic diffeomorphism be arbitrary 

slow? Could one get a uniform bound on the mixing rate of a stably ergodic 

diffeomorphism ? 

Another question along the same lines is 

QUESTION: Must a stably ergodic diffeomorphism be Bernoulli? stably 
Bernoulli? 

At present not much is known about stably Bernoulli systems apart from some 

examples constructed in [2, 5, 45]. 
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7.3. SKEW EXTENSIONS OF NON-UNIFORMLY HYPERBOLIC SYSTEMS. In r e c e n t  

papers [48, 49] Young introduced a class of non-uniformly hyperbolic systems 

which have statistical properties similar to that of Axiom A attractors. 

PROBLEM: Generalize the results of this paper and [21] to the compact group ex- 

tensions of non-uniformly hyperbolic systems satisfying the conditions of Young. 

Examples of systems one would like to understand along these lines are billiard 

flows, flame flows on manifolds without conjugated points. 

7.4 .  RANDOM WALKS ON HOMOGENEOUS SPACES. The next question deals 

with improving estimates of the Appendix. 

QUESTION: In the case G is semisimple, give more information about the 

spectrum of the operator J defined in (61). 

So far, in all the examples where estimates could be obtained J has a spectral 

gap. See [29] for the survey of known cases as well as some numerical simulations. 

Other questions deal with the situation of Subsection 6.3 without the 

assumption that G is compact. 

PROBLEM: Give necessary and sufficient conditions for xn to satisfy CLT. 

This question appears to be hard especially if < W > is nilpotent, but still it 

is possible that  a nice characterization could be obtained for large class of pairs 

(G ,X) .  

QUESTION: Is it true that generically xn satisfies CLT? 

Some important special cases are studied in [6, 31]. 

7.5 .  NON-RAPIDLY MIXING EXTENSIONS. This subsection deals with the 

classification of non-rapidly mixing extensions. For example, if Y is an infra- 

nilmanifold and F: Y --+ Y is Anosov and X = G, Corollary 1.2 tells us that 

stably ergodic maps are rapidly mixing. Now by [17] non-stably ergodic exten- 

sions can be characterized by the fact that by a coordinate change T can be 

reduced to a subextension with skewing function T(X) belonging to a coset of a 

proper subgroup of G. Our Theorem 3.3 has a similar conclusion. 

QUESTION: IS the same conclusion valid without the assumption that X = G? 

Some special cases are analyzed in [12]. 

Another question deals with a geometric characterization of exponential mixing 

similar to our Theorem 1.1. 
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QUESTION: Does exponential mixing depend on which Gibbs potential we 

consider? 

We plan to address some of these problems elsewhere. 

Appendix A. Diophantine approximations 

Here we study some problems related to Diophantine approximations. Let a 

compact group G act transitively on a manifold X. Let 7-/s denote the s-th 

Sobolev space: if f --- ~ x f ~ ,  f~ E H~, then I[fl[ 2 -- ~ x  I]fxl 2 ~2s L2,, �9 l['[lwill 

denote L2-norm. Recall that  lr(g)f denotes 

[:(g)f] (5) : f (g - l x ) .  

Definition: A subset W C G is called D i o p h a n t i n e  if 3c~1, C: so that Yf E H~, 

A # 0, 3g C W such that  

(60) ll( 1 - 7r(g))f[] >- C1)~--Ot: I[fl[. 

We shall say that W is Diophantine on X if it is not clear which action of G 

we are considering. 

Recall that (W} denotes the smallest Lie subgroup of G containing W. 

PROPOSITION A.I:  (a) I f W  is Diophantine then (W) acts transitively on G. 

(b) W is Diophantine if and only if W (J W - :  is Diophantine. 

Proof (a) is clear, since otherwise there would be a {W)-invariant function. 

(b) 11(1 - 7r(g))/[ I _> C:A -('' [Ifllvv[l(1 - 7 r ( g - : ) ) f l  I >_ Cl,~-C~lllfll. | 

Now we consider the case when W is a finite set: W -- {9: ,g2, . . . ,gd}.  Let 

Sn denote the set of all words in W and W -1 of length at most n : S,~ = 
•  4-1 4-1 g~: g~2 ' " " g i k  }k<n. Define 

d 
1 

(61) J ( f )  = : 
l----1 

Let C ~  (X) denote the space of C~-flmctions on X with zero mean. 

THEOREM A.2: The following conditions are equivalent: 

(1) W is Diophantine; 
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(2) 1 - J is invertible on C ~ ( X )  and there is a constant OL 2 such that for all s 

there is a constant Cs such that 

I[( 1 - J)-lf[Is <- Csl [ / l l s+a2;  

(3) ~C3, ~3, Xo such that Ve, S[c3(1/~)-3]Xo is an e-net in X;  

(4)3C4, (~4, such that Vx0 Ye, S[c4(1/~).4]Xo is an e-net in X;  

(5) 365,~5 such that vf: f f ( x )dx - -  O, f lf(x)12dx--- 1, IAf(x)l < A 2, there 
are g e W and Xo e X such that If(xo) - f(gxo)l >_ C5 A-a~. 

Proof: (1)0(2)  For f E HA 

1 
(62) ([1 - J]f, f )  = ~ E ( [ 1  - 7r(gt)]f, f) .  

l 

Let j ( f )  be an index such that 

11(1 - ~r(ga(:)))fll _> C1A -"111f[I. 

Since each term in (62) is positive 

1 d ([1 - J ] f , f )  > ~([1 -7r (g , ( f ) ) ] f , f )  ~- ( ] l f ] l  2 - ( T r ( g j ( f ) ) f , f ) )  

C 2 
= ~d[l[1 - Ir(gj(f))]fH ~' _> ~-~ A-2~'llf]J2. 

(2)o(4)  We have to find N such that for all x, y there is g E SN such that 

gB(x, e/2) 0 B(y, e/2) ~ 0. If f, h E HA then 

] ( ( j  _ jN+I) (  1 _ j ) - l f ,  h) I ~ Const ]lf[Io[Ihllo . 

E C ~ ( X )  such that supp f  C B(x,e/2) ,  supph C B(y,e/2),  

f f ( x )  dx = f g ( x ) d x  • 1 and I[f]lo,]lhl]o _< Constv -m, Ilfll2,1lhl[2 
Take f,  h 

I , g  _> 0, 
Conste -m-2 where m -- �89 Decompose f = )-~x fA, h = :~-~A hA, where 

fA, hA E HA. We have 

= ~  ( I ( 1 - J N + I ) ( i - J ) - I ) f A ' h A )  = ( I ) + ( I I ) ,  
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where in (I) the sum is taken over A < Ao and in (II), A > Ao. 

(I) < Coast ~ 2  ~ I I f~ l lo l lh~,Jlo < Coast -::-.Aa2 
- N ~-~ ~ s - ~  

(II) < ~ IIAIIollh~llo < "~O 4 E IIl~ll~llh~l12 _< ~0 4s-2m+4. 
A>Ao A>,ko 

Take Ao = 8-(2m+5)/4, N = ) ~ a 2 c - 2 m - 1 .  Then 

E Jk f ,  h - 1  < C o n s t s ,  
k=l 

so for some k, ( j k f ,  h) > 0 and hence 9g E SN such that 

gB(x, ~/2) ["1B(y, ~/2) # 0. 

Therefore SNX is an e-net in X. 

Clearly (4)3(3) .  
1 (3 )3(5)  Let N = [C3(1/s)~a]. Take g �9 SN such that If(gxo) - f(xo)1 >_ ~ .  

El ~2 ~N Let g = gilg,~ ""g ,N,  where e 3 �9 {-1 ,  +1}; then 

1 
�9 " " " \ g i k + l  . . . .  

k 

So at least one of the terms is greater than 1/2N; 

(5)3(1)  Let f �9 IHI~. By the Sobolev Embedding Theorem 

IlV fllc(x) <_ c ~ .  

Thus if If(gxo) - f(xo)[ > 65 A-~5, then for x �9 B(xo, 4~A -(ah+~)) 

C5 A_~ I f ( g x o ) -  f(xo)l  > -~- 

and so f [f(gx) - f(x)[ 2 dx >_ Coast A -7, 7 = (a5 +/3) d i m X  + 2a5. | 

We now turn to the case when G is semisimple, X -- G and the action is left 

translation. 

THEOREM A.3: W is Diophantine if  and only i f  (W} = G; moreover, there is a 

constant eo = co(G) such that any co-net in G is Diophantine. 

Proo~ In view of Proposition A.1 we only have to prove the "moreover" part. 

We proceed by induction. Start with some small So and consider no so that Sno 

is an so-net in G. Define 

Sj+l = (Csj) 4/3, nj+l = [Cnjs;1/3].  
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~ _ 

Assuming that C, C are large enough we show that Sn~+i is an ej+l-net  if Snj 

is an ej-net. Consider g with an invariant scalar product. We say that a basis 

{Xk} is aligned if 

(a) �89 _< IlXkll _< 2; 
(b) Z(Xk, Xl) >_ Ir/4. 
If ej is small enough, there is an aligned basis {Xk (j)} such that 

X(kJ ) 2/3 (j) = e x p ( e  3 X k ) E S, b. 

Thus 

x(j) ~ (j) (j)~ / 4/a~.~(j) X~j)] ) kl = [xk  ,Xt J----exp',e3 [Ak ' +O(e 2) ES2nj. 

Now the space of all aligned bases is compact and [g, 9] = g, so we can extract 

from {[X(J),x~J)]} a basis {Y(J)} so that 

(63) Cl _< IlXkll _< c2 / (Xk,X~)  >_ c3. 

By the same argument the set of the bases satisfying (63) is compact and so, 

given 5, we can find C1,C2, C3 > 1such that VY: C1 < [IY][ _< C2 3ak E Z, 

[ak[ _< C3 such that 

Y - Z aklkV(J) <_ 5Hy[]. 
k 

3C1,C2, C ~ such that Vy : t, ley _< dist(y, id) <_ So if ej is small enough then ' ' ' . . ,  4/3 
C2 4 / 3  4 / 3  ~ 3ak~ C Z, lak~l _< C~ such that d i s t ( v , l - I ~ ( ~ ) )  ~ ' )  _< ~ . We are ~ow 
ready to establish our claim. Choose a neighborhood U of the identity in G and 

introduce a coordinate system on U. Partition U into coordinate cubes U = [.Jt Ct 
4/3 

of diameter t~ej . By assumption Vt 3t': Ct,~Sn~ r 0 and dist(Ct,Ct,) _< 

Const ej. Thus we can join Ct, and C~ by a chain Ct, = C(~ (g) = Ct 
of at most Constej  -U3 elements. Now if C' is large enough, the considerations 

above imply that 3C such that if Sn ~ C (~) ~ 0 then Sn+cn~ ~ C (i+l) ~ 0. Let 

Nj = Cn3e-~ 1/3. Then SNj intersects all Ct's and so is an e3+l-net in U. But if 

e0 is small enough then S~ o U = G. | 

To pass to the general case we need a slight generalization of this result. 

PROPOSITION A.4: Let G be a compact group and W C G be a tlnite subset. 

Then 
(a) W is Diophantine on (W)/Center((W)); 
(b) dim[(W), (W)] is a lower semicontinuous function on G Iwl. 

Proo[: (a) is a direct consequence of Theorem A.3 since the group 

(W) / Center( (W) ) is semisimple. 
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(b) We establish the following statement 

Let H C G be a semisimple Lie subgroup, [~ = L(H) ,  then 3Co such that if 
X1 . . .  Xk is a basis in [} such that 

7~ 
(A1) max(l[Xjl[) <_ 2min([]Xjl]) , Z(X, ,X j )  > -~, 

IIXjll <_ co then VY1...Yk such that [IYj - Xjll < ~ollX~ll, the group F -- 
< {exp(Yj)} > satisfies dim([F, F]) > dim(H).  

The proof is by induction on codim(H). If H = G this follows from Theorem 

A.3. For inductive step let y~l) = exp(Yj). We proceed as in the proof of Theorem 

A.3 constructing y~m) = exp(Y(-~)) e [F,F] where yJm) satisfy (A1) and their 

norms decrease with m. Let 5 be a sufficiently small constant. There are two 

cases: 

(1) Vm, j / ( y (m) [~ )  < 5. The proof is completed as in Theorem A.3. 

such that  Z(Y(m),o) >_ 5. Consider the one with minimal m. Let (2) 3m, j 
L(G) = 0 + bl + b2, where ad(H) = 0 on [~2 and is non-degenerate on ~1. It is 

to see that ]lr~lY('~)ll > 611Y(m)ll/2. Then tile statement follows from the easy 

inductive assumption applied to L (Y1, �9 �9 �9 Yk, y(m)). | 

Now we can dispose of the assumption that W is finite. 

COROLLARY A.5: Let G, X be as above. For infinite W the following conditions 
are equivalent: 

(1) W is Diophantine, 
(2) W contains a finite Diophantine subset; 
(3) (W) = a .  

Proof: We already know that ( 2 )~ (1 )~ (3 ) .  On the other hand, the proof of 

Theorem A.3 shows that if c0 is small enough then any c0-net is Diophantine. So 

if (3) holds, then Sno is an c0-net for some no and we can extract a finite subnet 

V C Sno. Now i f W '  is af in i te  subset of W such that  (W') D V, then W' is 

Diophantine by Theorem A.3. | 

Remark: The above statements fail for the torus. For example, the set of all 

elements of finite order is Diophantine but it obviously does not have finite Dio- 

phantine subset. On the other hand, there are plenty of t 's such that  ( { t } / =  T 

but {t} is not Diophantine. 

COROLLARY A.6: Let X be an arbitrary transitive G-space (G semisimple). 
Then 
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(a) W is Diophantine iff (W} acts transitively on X.  

(b) I f  W is Diophantine and 17d is close to W in the Hausdorff sense, then W 

is Diophantine. 

Proo~ (a) follows from Proposition 2.8(b) and Proposition A.4(a); (b) follows 

from (a), Corollary A.5 and Proposition A.4(b). | 

COROLLARY A.7: Let G be any compact group and X be a transitive G-space. 

Let p: (W) --+ (W)/[(W),  (W)] be the natural projection, n set W is Diophantine 

iff (W} acts transitively on X and p(W) is Diophantine on [(W), (W)]\X.  

Proo~ Let W be a set satisfying the conditions of the corollary. Suppose that 

Y g  there is a sequence far C H~ N such that IIfN -- 7c(g)fg[I ~ C'~N N for g E W. 

We want to get a contradiction if N is large enough. By Corollary A.5 and the 

proof of Theorem A.3 there is a finite set 1~ C Sm(W) such that 1~ C [W, W] 

and W generates [G, G]. Let ](x) denote ] = fir,v] fg(gx)dg. Then Vg �9 W, 

HIN -  (g)/Nll -< for 

/N(gX) = [ fN(hgx)dh -~- f fN(g(g-lhgx)dh ~- (fN o 9)(x). 
J[a ,G] J[G,G] 

By Corollary A.5, 17V is Diophantine on [G, G] so there are constants C(17V), r 

such that IIfN -- ]NIl <-- C AN-~. But fN can be regarded as a function on 
[(W), (W}]\X, so ~g �9 W such that 1[Tr(g)f- fl[ >- Const-a(w), a contradiction 

i f N > a + f l .  | 

Remark: This corollary yields quite a comprehensive criterion for an action 

to be Diophantine. Indeed Diophantine subsets of tori are well studied. Also, 
topological generators of semisimple groups are well understood. For example, 

[4] proves that for a semisimlple G, pairs generating G form an open dense set. 

Hence we have 

COROLLARY A.8: Let G be a compact group acting transitively on X.  Then 

almost all two-point sets are Diophantine. 
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