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ABSTRACT

We study compact group extensions of hyperbolic diffeomorphisms. We
relate mixing properties of such extensions with accessibility properties
of their stable and unstable laminations. We show that generically the
correlations decay faster than any power of time. In particular, this is
always the case for ergodic semisimple extensions as well as for stably
ergodic extensions of Anosov diffeomorphisms of infranilmanifolds.

1. Introduction

1.1. OveERvIEw. This paper treats compact group extensions of hyperbolic
systems. These systems have attracted much attention in the past because they
provide one of the simplest examples of weakly hyperbolic systems. Due to the
major developments in the 1960s and 1970s the theory of uniformly hyperbolic
systems (i.e., Anosov and Axiom A diffeomorphisms) is quite well understood
(see [3, 7]). It is also now generally accepted that the hyperbolic structure is
the main cause of the chaotic behavior in deterministic systems. Thus it is
important to understand how much the assumptions of uniform hyperbolicity
can be weakened so that the same conclusions remain valid. One direction of
research which experiences a new wave of interest now is the theory of partially
hyperbolic or slightly less generally transversely hyperbolic systems. In this case
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our diffeomorphism preserves some foliation and is hyperbolic in the transverse
direction, at least, when restricted to the non-wandering set. The systems we
deal with can be specified by the requirement that the foliation involved has
compact leaves and the maps between leaves are isometries. If G is a compact
group the diffeomorphisms with this property form an open set in the space of
G-equivariant dynamical systems and they play the same role in the equivariant
theory as Axiom A play in the space of all diffeomorphisms.

Thus the systems under consideration are the simplest partially hyperbolic
systems since we have very strong control over what happens in the center. Be-
sides, harmonic analysis can be used to study such systems. These reasons make
compact group extensions over hyperbolic systems an attractive object of inves-
tigation. In fact, qualitative properties of these systems are well understood now.
The progress here can be summarized as follows. First, Brin in a series of papers
[10, 11, 12] applied the general theory of partially hyperbolic systems [13] to
show that, in the volume-preserving case, such systems are generically ergodic
and weak mixing. It then follows from the general theory of compact group ex-
tensions [43] that they are also Bernoulli. Quite recently Burns and Wilkinson
[17] used new advances in partially hyperbolic theory [29, 40, 41] to show that
generically ergodicity of such systems persists under small not necessary equiv-
ariant perturbations. In another direction Field, Parry and Pollicott generalized
Brin’s theory to the non-volume preserving context. By contrast, not much is
known about quantitative properties of such systems. This paper is a first step
in this direction.

To explain our results we need to introduce some notation. Let F' be a topo-
logically mixing Axiom A diffeomorphism on a compact manifold Y. Let f be a
Holder continuous function and py be a Gibbs measure with potential f. Also,
let G be a compact connected and simply connected Lie group and X be a transi-
tive G-space. Write M =Y x X. Let 7: Y — G be a smooth function. Consider
the skew action

1) T(y,z) = (F(y), 7(y)2).
It preserves measure 1 = pgxHaar. If A and B are functions on M let
pan(n) = [ Aly.0)BI"(4,2)du(n.z).

Denote by

pann) = panln) — [ Al 2)duty,2) [ By 2)iuy,2)
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the correlation function. Call T rapidly mixing (T' € RM) if 5 is a continuous
map from C®(M) x C*(M) to rapidly decreasing sequences, that is given k
there are constants C', r such that

(2) 1pa,8] < CllAllcrany|IBllcr(anyn ™

At first glance this definition depends also on the Gibbs potential f, but we will
show that it is not the case. One may think that better bounds should hold for
generic extensions. However, the decay of correlation this definition requires is
fast enough to imply good stochastic behavior. As an example in Subsection 6.1
we derive the Central Limit Theorem from it. On the other hand (2) is mild
enough, so that it can be verified in many cases.

As in qualitative theory, accessibility properties of the system under consid-
eration play an important role in our analysis. Let Qp be the non-wandering
set of F and Q = Qp x Y be the non-wandering set of T. Let m’, m” be
points in 2. We say that m” is accessible from m/’ if there is a chain of points
m' = mg,m1,...,my, =m" such that m;, belongs to either stable or unstable
manifold of m,. (We call such a chain n-legged.) Given m, the set of points in
the same fiber which are accessible from m lie on an orbit of a group I'; which we
call the Brin transitivity group. As usual different choices of reference point give
conjugated groups. The Brin transitivity group can be obtained as follows. Let
T be the principal extension associated to T (that is T acts by (1) on Y x G). Let
I'(n, R) be the set of points which can be accessed from (y, id) by n-legged chains
such that the distance between m, ., and m, inside the corresponding stable (un-
stable) manifold is at most R. Then if n, R are large enough, I'(n, R) generates
I';. It was shown by Brin that T is mixing if and only if I'; acts ergodically on
X. Here we prove the following refinement.

THEOREM 1.1: Let n, R be so large that I'(n, R) generates I'y. Then T € RM
if and only if I'(n, R) is Diophantine.

Here as usual the Diophantine condition means the absence of resonances.
More exactly we call a subset S C G Diophantine for the action of G on X if for
large k, S does not have non-constant almost invariant vectors in C*(X). See
Appendix A for details.

It can be shown that a generic pair of elements of G is Diophantine. (The
exceptional set is a union of a countable number of positive codimension sub-
manifolds. In case G is semisimple it is a finite union of algebraic subvarieties.
See [25].) From this we can deduce that in a generic family, the condition of
Theorem 1.1 is satisfied on the set of full measure. A drawback of this result is
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that it does not tell how the constant C from (2) varies along the family. Thus
one may wonder how large the interior of RM is. This question is easier if 2 is
large [38, 27] (since then I'; is also large) or if G is semisiple.

Let ERG be the set of ergodic group extensions.

COROLLARY 1.2: If f is an Anosov diffeomorphism of an infranilmanifold then
Int(RM) = Int(ERG).

This is a direct consequence of Theorem 1.1 and [17]. This result is quite
satisfying because one would not expect good mixing properties from a diffeo-
morphism which can be well-approximated by non-ergodic ones.

COROLLARY 1.3: If G is semisimple then Int(RM) = Int(ERG) = ERG.

In general we can reduce the problem to an abelian extension. Let T, be the
factor of T on Y x (X/[G, G)).

COROLLARY 1.4: If T € ERG then T € RM if and only if T, € RM.

Still in the general case of compact extensions of Axiom A diffeomorphism
we do not know how large the interior of rapidly mixing diffeomorphisms is.
To get some insight into this we study two related classes of dynamical systems.
These are compact group extensions of subshifts of a finite type and of expanding
maps of Riemannian manifolds. Heuristically, the subshifts of finite type are less
rigid than Axiom A diffeos because any subshift of a finite type has an Axiom A
realization but small perturbations of the subshift correspond to piecewise Holder
perturbations of diffeomorphisms. Similarly, natural extensions of expanding
maps have Axiom A realizations but the unstable foliation will be more smooth
than in the general case. So they are more rigid. Nonetheless, in both cases
we show that the interior of rapidly mixing maps is dense. In the second case
even the interior of the exponentially mixing maps is dense. This suggests that
the same result might be true in the context of compact extensions of Axiom A
diffeomorphisms.

1.2. ORGANIZATION OF THE PAPER. Let us describe the structure of the paper.
Section 2 is preliminary. Here we recall necessary facts about Axiom A diffeo-
morphisms and symbolic dynamics. We also present Brin’s theory of compact
extensions and its generalization by Field, Parry and Pollicott. In Section 3 we
study compact group extensions of expanding maps. First, we describe the Lie
algebra of Brin transitivity group. We then proceed to show that if this algebra
equals the whole Lie algebra of G (infinitesimal complete non-integrability) then
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the system is exponentially mixing. Under some technical assumptions we estab-
lish the converse of this statement. Also, we show that if this condition is not
satisfied the map can be made non-ergodic by an arbitrary small perturbation.
We conclude Section 3 by showing that infinitesimal complete non-integrability
is generic. Section 4 treats symbolic dynamical systems. We show that, in the
absence of resonances, our skew extension is rapidly mixing. (See Appendix A
for the detailed discussion of the notion of resonances we use.) We also describe
the reduction of a general extension to the semisimple and abelian cases. We
conclude Section 4 by showing that rapid mixing is generic. In Section 5 we
apply the results of the previous section to study extensions of Axiom A diffeo-
morphisms and prove Theorem 1.1 and Corollaries 1.2-1.4. Section 6 contains
some applications of our estimates. Some open questions are collected in Section
7.

For the reader familiar with the concepts of Section 2, Sections 3 and 4-6
constitute blocks which could be read separately. Roughly speaking the difference
between Section 3 and Section 4 is that in the former we work with Lie algebras
while in the latter we work with Lie groups. The unavailability of the differential
calculus accounts for the fact that results of Section 4 are weaker than results of
Section 3.

Some of the arguments of this paper are similar to [20]-{21]. The main differ-
ence which appears here as compared to [20]-[21] is that we have to work with
arbitrary finite-dimensional representations rather than one-dimensional ones.
Still we show that most of the results of [20]-[21] can be generalized to the set-
ting of the present paper.

NoTaTION: If W is a subset of G, we denote by < W > the smallest Lie
subgroup of G containing W.

ACKNOWLEDGEMENT: It is a pleasure for me to thank W. Parry, M. Pollicott,
M. Ratner, K. Schmidt and A. Wilkinson for useful discussions. This work is
supported by the Miller Institute of Basic Research in Science. 1 am also grateful
to the referee who found 341 errors and misprints in the original version of this

paper.

2. Preliminaries

2.1. SUBSHIFTS OF FINITE TYPE. In this section we recall how to reduce the
study of Axiom A diffeomorphisms to symbolic systems. First, we recall some
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facts about subshifts of finite type. For proofs and more information on the
subject see [7, 37].

For a n X n matrix A whose entries are zeroes and ones we denote by X =
{{wi}f® : Auwn = 1} the configuration space of a subshift of a finite
type. Usually we omit A and write X instead of ¥ 5. The shift o acts on ¥
by (6w); = wi+1. The one-sided shift (£},) is defined in the same way but
the index set is the set of non-negative integers. For § < 1 we consider the dis-
tance dg(w',w?) = 0% where k = max{j : w} = w? for |i| < j}. If X is a metric
space we denote by Cy(E, X') the space of dg-Lipschitz functions from ¥ to X.
Cy (3, X) is defined similarly to =+ instead of =. There is a natural embedding
of Cf (£, X) to C4(%, X) corresponding to the projection ¥ — £+. We use the
notation L(h) for the Lipschitz constant of h. If X is a Banach space we write
hp(w) = 2?2—01 h(c*w). Functions f; and fo are called cohomologous (f1 ~ f2)
if there is a function f3 such that fi{w) = fa{w) + fa(w) — f3(ow) + Const. For
any f € Cy(Z, X) there exists a function f € C\%(E, X) such that f ~ f. If @,&
are points in X and @y = @y we denote by [@,d] their local product. That is,
[(ZJ,(.:J]]' =w; if § <0 and [G},&J]j =wj;if 7> 0.

We assume that o is topologically mixing (that is all entries of some power of
A are positive). The pressure functional on Cy(X, R) is defined by

Pr(f) = sup / f(@) o + ha(0)

where the supremum is taken over the set of o-invariant probability measures
and hy(o) is the measure theoretic entropy of o with respect to 7. py is called
the equilibrium state or the Gibbs measure with potential f if [ f(w) dus +
hyu; (o) = Pr(f). For C4(X,R) potentials, Gibbs measures exist and are unique.
It is clear that cohomologous functions have the same Gibbs measure. Take f €
CJ (X,R) and let py be its Gibbs measure. To describe v it is enough to specify
its projection to $*. To this end consider the transfer operator Ly: Cy(Et) —
Co(Z7)
(L)) = Y @ h(w).
ow=w

The structure of the spectrum of the transfer operator is described by the Ruelle—-
Perron-Frobenius Theorem. Namely, the leading eigenvalue of Ly is simple and if
hy is the corresponding eigenfunction and vy is the corresponding eigenmeasure
then pr = hyvy.

A function f is called normalized if £;1 = 1. Given f there is unique
normalized f such that f ~ f Let f be normalized and w = wyws ... w, be an
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admissible word (that is Ay, ,,,, = 1). The map w(w) = ww is defined on a
subset of ¥} . On this subset the following equation holds:

dps(w(w))
dp(w)

Gibbs measures are exponentially mixing in the sense that VA, B € Cy(X%)

(3) luf (A(Boo™)) — us(A)ps(B)| < Const £"||A|l6]| Bl

for some & < 1.

= exp[fn(@(w))]-

2.2. BRIN GROUPS. Here we review Brin theory of compact group extensions
([13, 10, 11]). We include some proofs to make this paper more self-contained
and also because later on we shall use similar methods to obtain a quantitative
version of the results of this subsection. For different expositions of Brin’s theory
see [BW, PP2].

Let o: 3 — % be a topologically mixing subshift of a finite type. We consider
on X a Gibbs measure py with potential f € Cy(X,R). Let G be a compact
connected Lie group, X be a transitive G-space and dx be the G-invariant prob-
ability measure. We assume that (G, X) is a presentation in the sense that no
normal subgroup of G acts transitively on X.

Let M = X x X. We denote by Cy (%) (Cke(ET)) the space Cp(E, Cx(X))
(Co(ET,Ck(X))). Let 7 € Co(T.G) be a Holder continuous function. Form a
skew product T: M — M

T(w,z) = (ow, T(w)x)
and let dy = dugdr. For w € ¥ introduce stable and unstable sets:

Wi w)={w:3ng: w, =w, for i>ng},

)=

Whw)={w:3ng:w, =w, for i< mne}.
Define 7, (w) = 7(0" 'w) ... 7(ow)T(w). For w € W*(w), let
(4 By, @) = Jim 77 (@) (w)

and for w € W*(w), let

(5) Ay(w, @) = Nll_lgo (o V@)t (e w).
Now set
(6) W (w,2) = {(@,y) : w € W’(w),y = As{w, w)z},

(7) W w,z) = {(@.y) : w € W*(w),y = Ay (w, @)z}
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It is easy to see that dist(T™(w,z), T™(w,y)) = 0 as n — 400 exponentially
fast if (w,y) € W¥(w,z) and dist(T"(w,z), T*(w,y)) — 0 as n = —00 ex-
ponentially fast if (w,y) € W*(w,z). By a t-chain in ¥ we mean a set of
points w®, w!, ... ,w" such that for all i either w'*! € W*(w?) or wit! € W*(w?t).
An e-chain is defined by also allowing that w**! = o™w'. We can also define
e- and t-chains in M. As usual we say that (w® zo)(w!,z1)...(w",z,) covers
W = (w%?*...w"). By (6) and (7), for any such chain we have z,, = g(W)zy,
where g does not depend on zy. We also say that any chain connects its end-
points. If an (e- or t-) chain W has w® = w™ = w we say that W is a closed chain
at w.

Definition: The ergodicity group I'.(w) is the subgroup of G generated (set-
theoretically) by g(W) for all e-chains W at w.

Definition: The transitivity group I';(w) is the subgroup of G generated by
g(W) for all closed t-chains W at w.

We refer to I', and I'; as the Brin groups. Note that the Brin groups can be
defined (and used) in the much more general framework of extensions of partially
hyperbolic systems (see [34]). It is interesting to see how much of the theory
described below works in that setting.

PROPOSITION 2.1: For any e-chain W = (w% w!...w")

Ty(w") = g(W)Te(w®)g ' (W) and Te(w") = g(W)le(w®)g™ (W)

Proof: It is enough to consider two-point chains W = (w,®); the general case
follows by induction. If @ € W*(w)|JW™¥(w), we note that if V is a closed t-
chain (e-chain) at w then @V & is a closed t-chain (e-chain) at @. Thus I'v(@) D
g(W)I'(w)g~*(W). Similarly Iy (w) D g~ Y (W)T(@)g(W). If & = 0™w then V
is a closed chain at w iff o™W is a closed chain at @. |

As any two points in ¥ can be connected by a t-chain, we get the following
consequence of the preceding result.

PROPOSITION 2.2: (i) Vw!,w? Ty(w?) is conjugated to ['y(w?) and Te(w') is
conjugated to T¢(w?);
(i) Yw T'¢(w) is normal in T (w).

If we make a change of coordinates

(8) (@',2') = (w, a(w)z),
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then in the new coordinates T'(w', z') = (ow', 7'(w)) where
7' (w) = a(ow)r(w)a™ w).

I’s are transformed according to the following rule.

PRrOPOSITION 2.3: In the coordinates (w',z') = (w, a(w)x)
I(w) = a(w)Te(w)a Hw) and Ti(w) = a(w)i(w)a " (w).

Definition: T is called reduced if Yw!,w? there is a t-chain W connecting w?
to w? such that g(W) = id (the identity element in G).

ProprosiTION 2.4: IfT is reduced then

(i) T't(w) and T'c(w) do not depend on w;

(i) if W is a t-chain (e-chain) then g(W) € Ty (g(W) € T¢);
(iil) T /Ty is cyclic.

Proof: (i) follows immediately from Proposition 2.2.
(ii) Let W = (w°...w") be a t-chain (e-chain) and let V = (&°...0™) be a
t-chain with @° = w™, @™ = W, g(V) = id; then

g((W° .. W@t a™)) = g(W).

(iii) By (ii), if w? € W*(w') then A (w!,w?) € Ty, As(ow?,ow?) € Ty
But A,(ow!, ow?) = T(w!)As(w!,w?)T7(w?). Therefore if w? € W?*(w?) then
T(w!) = 7(w?) mod ;. The same is true if w? € W*(w?!) and hence if w? can be
connected to w! by a t-chain. |

ProprosiTION 2.5: Every T can be reduced by a change of coordinates (8).

Proof: Clearly T is reduced if every w can be connected to some fixed w® € &
by a t-chain W with g(W) = id. Now choose any chain W (w) connecting w to
w? such that g(W(w)) is continuous and set a(w) = g(W(w)) in (8). |

PROPOSITION 2.6: (i) T is ergodic iff T, acts transitively on X;
(ii) T is weak mixing iff T'; acts transitively on X.

Proof: We prove the weak mixing criterion. Ergodicity is similar but easier. By
Proposition 2.5 we may assume that T is reduced.

(a) Let T'; be transitive and h(w,z) be an eigenfunction of T. It follows from
[38] that we can assume that h is continuous. Then it is easy to see that it
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is constant along W*(-) and W*(-). Thus Vw,z Vg € T}, h(w,gz) = h(w,z).
Since T'; is transitive, h{w,z) depends only on the base point and since ¢ is
weak-mixing, h is constant.

(b) Assume that ['; is not transitive. If T, is not transitive then any T,-
invariant function on X lifts to a T invariant function on M, so we may assume
that T, is transitive. Let A be the algebra of the sets of the form & x Z where
Z is Ty invariant. Then T preserves 4 and the action of T on A is a factor of
a group shift on K =T, /I_‘t. Thus it has pure point spectrum and so T is not
weak-mixing. |

By a theorem of Rudolph ([43]) any weak-mixing compact group extension of
Bernoulli shift is Bernoulli shift, therefore, we get

COROLLARY 2.7: If G is compact then T is Bernoulli iff Ty acts transitively
on X.

Remark: Since in our case 7 is Holder continuous we do not have to use the deep
result of [43] to obtain the last statement. In fact straightforward arguments of
[36], [14], [42] would suffice. The later approach is similar to one used in the
present paper to derive estimates on correlation function.

It is known that if G is semisimple then ergodicity implies weak mixing. Note
that this is a consequence of the following statement (we need part (a) here while
part (b) will be used later on).

PROPOSITION 2.8: (a) Let X be a transitive space of a compact connected
semisimple Lie group G, Hy C Hy be subgroups of G. Assume that H, is normal
in Hy and Hy/Hy = T? x F where F is a finite group. If H, acts transitively on
X then so does H;.

(b) Let X be a transitive space of a compact connected Lie group G, H C G
be a closed subgroup. Then H is transitive on X iff it is traunsitive on X/|G,G]
and X/ Center(G).

Proof: (a) We may assume that H; is connected by passing to its identity
component. Also, since X is connected we may assume that so is Ha and hence
that F = {id}. Now T¢ = Hy/H; acts on Y = H;\X and, because this action
is transitive, Y = T™ for some m. So X and hence G fiber over T™. Therefore
m = 0 as claimed.

(b) By the same argument as before we can neglect finite covers and assume
that Center(G) NG, G] = {id}. Since X is a transitive G-space it equals G/T for
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some subgroup T of G. Take g € G. As H is transitive on X/[G,G],3h € H,v €
I',¢g' € [G,G] such that hgy = ¢’. Since H is transitive on X/ Center(G), we
can apply (a) to conclude that [H, H] also acts transitively on G/I" Center(G).
Equivalently, the left action of T Center(G) on [H, H|\G is transitive. Hence T
acts transitively on [H, H] Center(G)\G. Again by (a), [I',T'] acts transitively on
[H, H] Center(G)/G. Thus 3k’ € [H, H),~' € [[',T'] such that h’g’y’ € Center(G).
But also h'g’y’ € |G, G], thus h'¢’y' = id. But h'g’y’ = h'hgyy’, so Hgl' = G.
|

2.3. ONE-SIDED SUBSHIFTS. Here we discuss the reduction of two-sided sub-
shifts to one-sided ones.
First, we show that by a change of variables we can obtain that 7(w) depends

1

only on the future. Given two sequences w!, w? such that w§ = w? let [w?,w?

denote their local product, that is, [w',w?); = w; for j < 0 and [w', w?], = w?

for j > 0. For each a € {1,....n} choose a sequence &(a) such that @(a)y = a.
Let ¢(w) = [w(wo),w]. Make change of variables (8) with

aw) = A7 ($(w), w).

It is easy to see that in the new variables local stable manifolds are flat, that is
if w} = w? for j > 0 then A{(w',w?) = id. Thus

id = Al(w',w?) = 7' (w") Al (0w, ow?) (7' (w?))

Hence 7'(w!) = 7/(w?), i.e., 7’ depends only on the future coordinates.

Now we show that we also can assume that A, B € Ck¢(21). In fact, suppose
that for all such functions |p4,g(N)| = 0. Take A,B € Cy(X). For any
cylinder C, , = C_n 0(w,) choose a sequence &, ; € Cp ;. If H € Cyg(X) denote
Hm)(‘”* ) = H([én,](w)v wl, Tf—z—l(w)"—n(én,](w))x); then

|IH — H™ o < Const || H|x,6™,
where HHHk,e denotes the norm of H as the element of Cy(Z, Ck(X))- Also,
1
|H™ o T™||x.6 < Const ||H™||g 0(~)n
A\
and H™ o T™ € Cy(ELt). So

(9)  PaB(N) = pae B (N) +0(0") = pamiorn pmorn (N) +O(67)
= 0N——>0(1) + On—)oo(gn)
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Thus p4,5(N) — 0, N — oo.
Let T be reduced and A € Cy4(X). Given A € Cy g(M) let

2) =Y [A(T™(w,2)) — AT™($(w), As(w, $(w))z))]-

Then B € Cy (M), since the derivative with respect to the second variable of
the n-th term of this sum is exponentially small and

(10) A—B+BoT € Crp(zH)
(see [47, 37] for more details).

2.4. AN EXPRESSION FOR THE CORRELATION FUNCTION. In this section we
provide an expression for the correlation function we shall use later on. By the
preceding section we can assume that (X, o) is a one-sided subshift of finite type.
If w, w are two-sided sequences such that w; = w; for 7 > 0, then A (w, w) = id.
We also assume that the potential f of Gibbs measure u is normalized, that is

(11) Z ef W) —

Let A be the Laplace operator of some G-invariant Riemann metric on X. Let
H, be the space of functions satisfying Af = A?f, [ f(z)dz = 0 and Hy be
the space of constants. In this subsection we provide a formula for correlation
function

pa,B(n / A(q)B(T"q) du(q).
We have
pa,B(n //A w, ) B(o™w, T (w)z)dpde.

Let us make the change of variables w = ¢"w, y = 7, (w)z; then by the definition
of Gibbs measures

pasln f / @) 3 e (W) Aw, 7 (w)y)dp(@)dy.

a"w w

Regard now A, B as functions ¥ — L2(X). Denote (n(g)f)(z) = f(g~z); then
we can rewrite the above expression as

pan() = [ (C24)(w,2)Bw,2) dulw, )

where

)(w)= Y f“n(rw)Hw).

ow=w
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Finally, decompose A = [ A(w,z)dz+3, Ay, B= [ B(w,z)dz+ Y, Bx where
Ax(w,-), Ba(w,-) € Hy. and write

L@ = Y @ (rw)Hw),
where 7, is the restriction of 7 to Hy. Then using (3) we get
pae(n) = [ A dula) [ B@ dula) + pan(n) + O™,
02 paslm =3 [ [ By@n(=) + 0.

2.5. AXIOM A DIFFEOMORPHISMS. Recall that F: Y — Y satisfies Axiom A
if there is an F-invariant splitting T, Y = E; @ E,, and constants C,£ < 1 such
that

(a) for any v € Ey(z), n > 0, ||dF"(v)|] < C&"||v]l,

(b) for any v € By(x), n > 0, |[dF—"(0)]] < C€7|jo]).

We suppose that the restriction of F' to Qr is topologically mixing. We shall
use the following statement (see [9]).

PROPOSITION 2.9: There exists a subshift of a finite type X, # < 1 and a sur-
jective dg-Lipschitz map p: ¥ — Qp such that poo = F op and if ps is the
Gibbs measure with potential f on Y then p,uy is the Gibbs measure on ¥ with
potential f o p.

Thus if Ty: Y x X =Y X X is a compact extension with skewing function 7,
we can associate to it the extension Tx: ¥ x X — ¥ x X given by Txn(w,z) =
(ow, T(pw)z). Now if P = (p,id) then P oTx = Ty o P. This allows us to reduce
the study of Ty to that of Tx.

3. Expanding maps

3.1. CONTENT OF THIS SECTION. In this section we study compact group
extensions of expanding maps. We assume that ¢ is an expanding map of a
compact connected Riemannian manifold M. In this section we use notation
which is slightly different from that used in the rest of the paper. Namely we
denote by z points in M. Let (M, o) be the natural extension of (M, o). Points
in M will be denoted by ¢ = (z,¥).

The structure of expanding maps is given by the following result of Gromov
and Shub [30, 44].
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ProrosiTION 3.1 ([30]): Let o be an expanding map of a compact connected
boundaryless manifold M. Then there exist a nilpotent simplyconnected Lie
group N and a subgroup T' of Aff(N) acting discretely on N such that M =
N/T'. Moreover, there exist an expanding automorphism o« € Aut(N) and a
homeomorphism € : M — M such that o(T') =T and ¢ = £a€™ 1.

In particular, the universal cover M of M is R% and the action of o on the first
cohomology group of M has no non-trivial fixed points.

Given 7 € C®(M,G) we define skew extension T: M x X — M x X by
T(z,n) = (oz,7(x)n). Recall the classical fact that expanding maps always
have a unique absolutely continuous invariant measure (see [19], for example).
Multiplying this measure by the Haar measure on X we obtain a smooth invariant
measure for the compact extension.

The Brin groups for compact extensions of ¢ are defined using the stable and
unstable sets exactly as was done in Section 2. We will also consider infinitesimal
analogues of the Brin groups. In the next subsection we introduce the notion of
infinitesimal complete non-integrability which is an infinitesimal analogue of the
property that the transitivity group is the whole of G. The results of this section
then could be formulated as follows.

THEOREM 3.2 (Mixing): Infinitesimal complete non-integrability implies
exponential mixing with respect to the smooth invariant measure.

Definition: We say that T is stably ergodic if for all pairs (7,7) C%-close to
(o,7), T 7 is ergodic.

THEOREM 3.3 (Characterization): If X = G then the following properties are
equivalent:

(a) T is stably ergodic;

(b) T is exponentially mixing;

(¢) T is infinitesimally non-integrable.

THEOREM 3.4 (Prevalence): Infinitesimal complete non-integrability is generic
among compact extensions of expanding maps in the sense that the complimen-
tary subset is a positive codimension submanifold.

3.2. INFINITESIMAL TRANSITIVITY GROUP. Here we describe an infinitesimal
version of I';. For z € M let h(z) be the span of

=

02 [Au((z, D), (', 7)) ~ Aul(2,9), (&', § )]z
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for all €, 7,7 (7, 37/ are chosen so that (z/,§") € W*(z, %) and (m’,g_}d) € W¥(z, 7).
Here 883' means the derivative with respect to 2’ applied to €.

The plane field h(z) is lower-semicontinuous, that is given zo there is a
continuous plane field h(z) with b(zo) = h(zo) and b(z) C b(z). As

Aulog,0q') = T(z)Au(g,¢) 77 (o),
we have
hoz) D Ad(r(x))h(z).
So the ergodicity of ¢ implies
PROPOSITION 3.5: The conjugacy class of b(z) is constant almost everywhere.

Let b be a representative of this class, F = {z : h(z) is conjugated to b},
F = {z: dimb(z) = dimh}. Then F C F, F has full measure and F is open (by
semicontinuity). Also for z € F

(13) h(oz) = Ad(r(x))b(x).

PROPOSITION 3.5: } is Holder continuous on F.

Proof: For fixed y, 7, €.

V(z,y,5.€) = 07 [Au((z, ) (", ¥)) — Au((2,9)(=", §'))]

is Holder continuous in z by the general theory of partially hyperbolic systems
[33] (or by differentiating the product formula for A, (5) term by term). If
zo € F and h(xo) is generated by {V, = V,(z0,¥,,%,,€;)}, then for z near zo
h(x) will be generated by V(z,y,,7,,€)). ]

LEMMA 3.7: Let W = (qo,4q1,---.qm) be an e-chain with zg,zm, € F (we write
q; = (%5,9,)); then

(14) Adg(W)b(zo) = b(zm).

Proof: Since h(z) is continuous on F and g(W) depends continuously on W it
suffices to prove this statement for a dense set of chains, so we may assume that
z, € F. Therefore it is enough to verify this statement for m = 1. The case when
g1 = o™qy follows from (13). Also if g; € W?(qp), then 6"z = 0"z for some n,
S0
b(z1) = Ad(7; }(z1))h(0"z1) = Ad(7;, (1)) h(0"20)
= Ad(Tn_l(.’L‘l) Ad(Tn(lﬂo))b(.’Eo)

= Ad(r; (21)7a(20))b(20) = Ad(g(W))h(zo).
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So it remains to consider the case g1 € W*(go). Again it suffices to consider a
dense set of pairs. By the above proposition we can find an open subset U C N
and a Holder function a: U x U — GL(g) such that VZ, Z € U §(%) = (%, 2)h(z).
Moreover, we can assume that « is close to id by shrinking U if necessary. Now,
we may assume that y%,yl € U for infinitely many n since this condition is
satisfied on a dense set of pairs. Then

b(z0) = Ad(7a(yn))b(yn) = Ad(Ta(¥n))(¥n, ¥n)B(yn)
= Ad(ra(ym))a(yn, ¥n) Ad(7: (y2)b(z1)-
Passing to the limit as n — oo we obtain the statement required. 1
Now semicontinuity implies

COROLLARY 3.8: If in the previous lemma zo € F, z,, € M then

Ad g(W)h(xo) D b(zm)-
In particular, F = F.

Let h(z) be the subalgebra generated by h(x) and H(z) be the corresponding
subgroup.

COROLLARY 3.9: T'c(z) C Norm(H(z)).

COROLLARY 3.10: If either T is reduced or T, = G, then H(z) = H almost
surely and always H(z) C H. Also b is an ideal and hence h = §.

LEMMA 3.11: IfT. =G thenT; = H.

Proof: By definition h C L(T;) without any assumptions, so H C T';. Locally
we can always make a change of variables (8) so that in a neighborhood U(zy),
Vz,z' Jy,y’ such that A,((z,y), (z',y")) = id. (Under this change of variables
h(z) gets replaced by a conjugated subspace, but by our assumption h(z) is an
ideal and so this change of variables does not affect §(z).)

Thus if ¢ is close to ¢’, then A,(g,q') € H. (To see this, join ¢ and ¢’ by a
smooth curve y(£); then

3¢ B2 00,7200, 7(6)] €)

As M is connected, A,(q,¢’) is always in H. As in the proof of Proposition 2.4
we get 7(z) = 7(z’)(mod H). Thus if ¢ € W*(q) then A,(g,q") = 77" (z")m0(z)
for some n and so A,(q’, ¢) belongs to H. |

Let g denote the Lie algebra of G.
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Definition: Call T infinitesimally completely non-integrable if § = g.

3.3. COMPLETE NON-INTEGRABILITY AND STABLE ERGODICITY. Here we be-
gin the proof of Theorem 3.3. In this subsection we work with principal exten-
sions, that is we assume that X = G. First we record the following consequence
of Lemma, 3.11.

COROLLARY 3.12: If G is semisimple, then T is ergodic if and only if H = G.
LEMMA 3.13: If G = T¢, then T is stably ergodic if and only if H = R®.

Proof: (a)If H =R then T, = T¢ and so T is ergodic. Also, if T is close to T
then by the semicontinuity of b, H(T) = R¢ as well and so T is ergodic.

(b) Let H # R?. We want to show that T is not stably ergodic. We represent
T¢ as T¢ = R*/Z4. Without the loss of generality we may assume that

(15) H(z* = {0}

since this could always be ensured by a passage to a factor group. Denote E' =
R?/H. Denote

(16) 1"7 75) Z a(da‘fe')'r y])
j=1

Here, in (do~?)& we take the local branch of 6=7 corresponding to y;. Let ©’
be the projection of © to E’. By assumption ©' does not depend on % and so it
defines a 1-form on M. Being the uniform sum of closed forms (locally we can
invert o and write ©' = lim, o0 3. _, d(7' 0 077)), © is closed (7' denotes the
image of 7 in E’). Also, from the last identity it is clear that

(17) a*(0') =0 +d(r).

Hence the cohomology class of ©' is o-invariant. Since 1 ¢ Sp(o*) (see Proposi-
tion 3.1 and the discussion thereafter), ©’ is closed, ® = da’. Hence the previous
equation reads d{a’oo —a') = 7. Let a{z) be some preimage of o' in R%. Let z,
be the fixed point of . Let us make a change of variables (z,t) — (z,t — a(z)).
After this change 7 is replaced by 7* where 7*(z) — 7*(xo) € H/Z®. In particu-
lar, by (15) 7* is homotopic to a constant map, so it can be written in the form
7* = 7(#*) where #*: M — R%. Now by a small perturbation we can pass from 7
to 7, Where 7 = n(7), where 7 € 7(qo) + H, where 7(qo) has rational component
and dim(H) = dim(H) and H is generated by rational vectors. But then T(7) is
not ergodic. |
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LEMMA 3.14: Complete uniform non-integrability is equivalent to stable ergod-
icity.

Proof: (a) If h = g then T is stably ergodic as in the proof of Lemma 3.13.

(b) Let T be ergodic. Then b is an ideal in g and, since I'; = H, we see that if
h # g, then b/[g, g] # 9/[g, g]. But in this case the maximal abelian subextension
T, of T is not stably ergodic. So arbitrarily close to T, there is a non-ergodic
extension 7,. But since T} lifts to M x G so does Ta. [ |

3.4. DECAY OF CORRELATIONS. In this subsection we prove Theorem 3.2. Let
¢ be the smooth invariant measure for o. Let § = 1/ min, ||do(z)||. Denote by
Ao the minimal eigenvalue of A on X.

In view of (12) we have to find bounds for the transfer operator

(Lai)(@) = 3 efOmy(r(y) H(y)

oY=z
where ef®) = du(y)/du(z). We need an auxiliary estimate.

PRroPOSITION 3.15: Given a branch y = o~ "z the following estimate holds:

drn(y) 6
d$ 1— 1_9“7-”1
Proof:
dr,(y) | dr da da’y
< n J < .
20 < > a5 Z Il < sl
Let
fll, 1

(18) —49<||)‘0 i

Introduce a norm .
%||DH lo )

|l = max (|1 H{lo, =

The following estimate is analogous to [21].
PROPOSITION 3.16: Ifn & < } then VA # 0 | L3H||x < | H|».
Proof: We have

L3 Hllo < D e @Hllo < [|HllolI£51 = 1 Hllo-

oty=zc
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Now let us estimate the derivative.

lﬂ@‘___l <01§z ofn(®) ZJ; Il
5 (e 5 oo
ory=z ory=z
(19) S9"||f||||ﬁ||0+rf—HAIITHHﬁHO-"H" L
0

(here the inequality ||ma(Z)|| < A||Z|| was used to estimate the second term).
Thus .
dC\"H) (. 9
A < il
dr ~ (9 ”fH+/\1——9 H

IITII) 1l + 67

We need an auxiliary estimate.

LEMMA 3.17: There are constants ni,eg,€1,€2, an open set U C M and

vectorfields ey(z),ex(z),...,e(z) such that & < |le,(z)|| < 1 and, for any

N > nq, there are inverse branches

y11(2), Y12(x), Y21(x), Y22(2), . . ., 11 (), Yr2 ()

of o such that VH3j : VH* : ||H* — H|| < ¢ the following is true. Let

O (@) = ma[0F, (v (ws(@) " Wi(@")) o, )

then
e1A < [[O (z) ~ O @) < e2).

Proof: Fix zo € F. By assumption 371, Zs, ..., Z; € h(zg) which span L(G).
Let D denote a Casimir operator. As mA(D)H = A2H 3j : ||ma(Z,)H|| > e

Since always ||mx(Z )H|| < A||L||||H|| we have ||m\(Z)H*|| > 2 for Z close to
Z, and H* close to H. Now 31, 772, e, such that

Aim 0% (wo) — ON (z0) = Z;.

Thus if N is large, e;(xz) is close to e; and z close to zg, then 6;’-"; (z) — Oj2(z) is
close to Z;. 1

We need more notation. Let ng be a number such that ™2U = M. Define

(20) C =sup||do™e, ||z,
J



176 D. DOLGOPYAT Isr. J. Math.

0
21 = _
(21) E 2(1_0+2>,
(22) N=16E+8’
€1
4
23 0= —.
(23) Y

Let g4 be a number such that

1
(24) €4 < Z

and if 21, Zz are two vectors such that

o 3
TAEEAA

and
121+ Za]| 2 |1 Z1]| + (1 — e4)|| 22|
then
P ,
(25) h_ D <
1Z1]]  11Z2]]

Set ng = na + ng, where a number n3 > n, is such that the following inequalities
hold:

g% 1
(26) BN < 1
1
™ < —
(27) No™ < 5
(28) Noo™ < 1%2
1
0™ < —.
(29) N ~ 32k

Let w(z) be a branch of 07"2: M — U and set zj, = y;.;:a) ow.

We now follow a construction of [21]. Let us recall it. Divide M into “cubes”
of diameter 6/X: M = |J,C¢(A). (Here, by cube in M we mean an image of a
cube in R? under the covering map.)

We now want to improve upon the estimate of Proposition 3.16. Let

Ka={R:M - R:|0,nR| < A}.
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LEMMA 3.18: There exist €, so that for given A\ there are linear operators
N1(A),Na(A), ..., Nypy(A) preserving Koy and such that:
(a) For R € K3,

/]/\/jR|2 dv < (1 —-¢) / R? dv.

(b) If |H(z)| < R(z), |DH(x)|| < 26AR(z) for some R € Ky then there exist
j = j(H, R) such that

(30) ICA"H(z)] < (N, (R))(z)
and
(31) ID(LA™H)(z)|| < 26AN;R)(z).

To prove this lemma we need several auxiliary estimates.
Take a cutoff function ¢;(x) satisfying

(a) supp ¢ € Cy;

(b) ¢¢(z) =1 if z € C; and dist(z,IC;) > §/8X;

() llgells < O

Set ¢ujx = ¢ 0 zj'kl. If J is a set of indices let ¢; = Z(tjk)y dijk.  Set
NUE)R = L7 ((1—e4¢s)R). Call J N-dense if V£3t' € J such that dist(C;, Cy) <
N§/A. The following result is essentially proven in [21].

PRrROPOSITION 3.19: (1)

(32) NUED L Koy — Ko

(2) If | H||(=) < R(z), | DH||(x) < 26AR(x), then

(33) ID(L™ H)||(z) < 250N <0 R(z).
(3) Jes such that if J is N-dense and R € Ky, then

/(.N'(‘I’E“)R)de, < (1-¢gs5) /deu.

Proof: (1) and (3) are established in [21] (note that (1) and (3) deal with
functions M — R rather than M — H,(X)). (2) follows from (19) and the
second condition of Proposition 32 by the same calculation as in Proposition
3.16. |

We want to find N-dense J so that A'(/54) R satisfies (31). Let
3 jx efro BRIy (7 25 ) H (25%)
¥ efro b R(ij)) — eeFmoi0k0) R( 250, )

p;lc (:I)) = (
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Call C; good if Fjo(t), ko(t) so that on C, [|pfae, Il < 1.
Let C = Udist(Ct:C,)gNJ/l)\l Cor.

Definition: If ® is a function on a set U, let
Oscy @ = maxy @ — miny .

PROPOSITION 3.20: Let H, R satisfy ||H|| < R, |H'|| < 2kAR, R € Kaa.
(a) Vz, 2’ € C, Vi, k

1 _ R(zj(z))

0 2= Ranl@) =
(b) Fix j, k. Then either
(35) | ()] < SR(a(e)) Vi eC
(36) |l > JR(zu(z) Ve €C.
((c) Moreover, if (36) holds then
(37) 1 (z3(@)) - B (zu(@DI| < 811z ()
and
(38) IE’ (2jk()) H(zy(z H

@)l 1H )]

Proof: (a) We have | In R| < 2A6™. Thus

Osce(In R) < 2M6™ —]\;—5 = 2N§o™.

By (28) the oscillation of In R on C is less than In2, as claimed.
(b) Suppose there is a point Z such that

I1H (z1(3)|| < R(z]k(x))

Then Vz € C

H H < 26X - 2R(zjx(Z ' < 4kAR(zk(Z))0"

)z
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Thus Vz € C
- - N N§ o
(39) [|H (26 (x))]] < ||H (25%(2))]] + —ARAR(zj(2))0
1 - 3 .
< (1_1 + 4HN50"°> R(zjx(Z)) < gR(zjk(J;))

(the last inequality holds since (29) implies that 4k N§g™ < %)
But

o

gR(z]k(i)) < S R(zk(2))

by (a).
(¢) (37) follows from (39) and (27). (38) follows from (37) because

‘ A(zw(@) fgr( H
[EIEA '»n

I ()
H(zu(@) () H q >_ fz (") ”
A H k@) o)l 1H ()]
1 z23e(2))

1A (z(2") ~ H(ze(2))| < 26. W

1H Gz @)1 H (250 (2) )]
LEMMA 3.21: Vt 3¢’ such that Cy is good and dist(Cy,Cyr) < N/

Proof: I for some jo, ko alternative (35) holds, then le/ . (@) <1, so we may
assume that (36) is always true. We assume that no C; C C is good and get a
contradiction. So suppose that Vs, j, k 3xz(s, j, k) € C, such that pj;’e(;c(s,j, k)) >
1. Take some 19 € C and choose jg, ko such that R(z)r,(z¢)) is the smallest.
(34) implies that Vz, j, k

R(zjoko (IE)) < 4R(ij ($))

Let Myp(e) = H(zk(@))/I1H (z3x (@), K (@) = 7(Tng (230ko (2))) Mok, (). (35)

and (25) now give
177 (7o (258 (2, o, ko)) M (@ (t, Go, o)) — K (w(t, jo, ko))l| < .
Proposition 3.15 and (38) now imply that V7, k
Oec, (1 (i (230(2) M () < E/2,
soVz € C

(40) 175 (g (28(%)) Myi(z) — K (2)]) < E6
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where

E=2(1—f§+1)

by (37) and Proposition 3.15. Since s is arbitrary this holds for all z € C. Hence
Vz,z' € C Vj

1B (') = (7o (252 (&)1 (231 (2))) K (@) <
1K (2') = m(Tg (251 (")) Mjs ()| + 1M (') = ma(73,} (22 (2))) B ().
The first term here can be bounded by Eé while the second one is less than
1M1 (') = Myr(@)l| + | M1 (@) = 7.} (21(2)) K (@) < (B + 1)6.

Hence

1B (') = 2 (Tno (291(2))7 (21(@))) K (2)| < (2B + 1)6.
By the same token

1B (@) = (1o (22(2))70 (232(@))) K (@) < (2B + 1)6.
Therefore

I (72 (o (251.(8) Ty (211.())) = T2 (7o (212(5)) T (212()))] K ()|

(41) < (4F + 2)4.

Now let j,¢; be as in Lemma 3.17 with H = K(zo). Set & = do™e; and let =
be obtained from zq by shifting along the flowlines of €, on distance Nd/\. Let
z(t) be this flowline. Let

-5

H(t) = [72(Tao (21 (2)) 7! (21(20))) = T2 (Tig (22(2)) 72, (212(20)))] K (o).

Then H(0) = 0,
(H)(0) = [0} - O3] (w(x0)) K (20)

and (8;2H)(t) = ma(Y (¢)) K (xo), where Y () is a second order differential oper-
ator and ||Y ()] < Const. So

(42) 1@ H)(2)]| < CA.
Hence

(13 7 (50) = 5 (051 - 03] wleo) Rz +
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where r < C(N4§?). Hence
(44) ”H (]-V/\—5> “ > Néey — C(NO)2.

Now by (21), Née; > (16E + 8)8, whereas by (23), CN2§% = 45. Thus (44)
contradicts (41), which proves Lemma 3.21. [}

Proof of Lemma 3.18: Set J = {(jo(t),ko(t),t) : C; is good}. Then N &4
satisfies conditions (a) and (b) of Lemma 3.18 and so this lemma is established.
|

Proof of Theorem 3.2: Define recursively
Ro = ||Ax[la-1, Rsyr = NT(RE AN esp

then ||£3™°? Ax||(z) < Rs(z) and so

/(EA”OSAA)B,\du < (/ R?du>% </|BA|2du>%

<@ =-e’llAlBal.  m

3.5. CHARACTERIZATION OF EXPONENTIAL MIXING. In this subsection we
again assume that X = G. We will finish the proof of Theorem 3.3 by establishing
the following result.

ProposiTION 3.22: If X = G and T is exponentially mixing, then it is
completely uniformly non-integrable.

Proof: Assume T is ergodic but §j # g. We must show that T' does not mix
exponentially. Let g = g; @ g2, where g; is the center of g, go = [g, g]- Since b is
an ideal in g and H contains [G, G] by Corollary 2.6, we see that ) = g g, where
g # g1. In this case we show that T has poor ergodic properties even on G/[G, G],
s0 we can assume from the beginning that G = T¢ = R?/Z? and g[)Z? = {0}.
We can regard g as a subspace of R?. Let P: M x T¢ — T¢ be the natural
projection. The proof of Lemma 3.13 shows that we can obtain 7(z) = ao +a(z),
a(z) € g by a coordinate change. Let A(z,t) = ¢1(t), B(z,t) = ¢4(t), where
d1,62 2 0, [ ¢1(t) dt = [ o(t) dt = 1, suppdy C B(x1,¢), supp g2 C B(zs,¢),
llp1), ll2)l < e~N. If T were exponentially mixing, there would be a constant C
such that [ A(q)B(TC™1/9)q) du(q) > 0 and therefore PB(xy,€) () B(zz,¢€) # 0.
Thus P(TC" (/) P-1(z,)) is a 2e-net in T¢, i.e., P(TC (YO B(x,2)) = T¢.
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However, the pullback of this set to R? is contained in a 2¢ neighborhood of the
ball in Cag In(1/¢)+ g centered at CagIn(1/e)+z¢ and of radius Const ag In(1/¢).
So its volume tends to 0 as ¢ — 0, a contradiction. Hence T does not mix
exponentially. |

3.6. PREVALENCE OF COMPLETE NON-INTEGRABILITY. In this subsection we
prove Theorem 3.4.

ProPOSITION 3.23: If

(45) I'./ Center(G) = G/ Center(G)
and

(46) b/ls, 8] = 8/l8, 9,

then b = g.

Proof: By (45), [Te,T¢] = [G,G] so b is [G, G] invariant. Applying Lemma 3.11
to G/ Center(G) we obtain h/ Center(g) = g/ Center(g) and, by [G, G] invariance,
[g,8] C b. This together with (46) implies that h = g. |

Proof of Theorem 3.4: By the above proposition we need to show that both (45)
and (46) are violated at most on a manifold of a positive codimension.

(45): We can assume without loss of generality that G is semisimple. Let
q1 and gz be periodic points of periods n, and ny respectively and W be some
t-chain joining ¢; and gs. Then

Te(g1) 2< {7, (91), 9(W)7ny (g2)g ™ (W)} > .

But the set of pairs (g1,92) € G x G such that < g1,¢2 ># G is an algebraic
submanifold of positive codimension [25]. (Recall that < g1,g2 > denotes the
subgroup generated by g; and g».) Thus (45) is true generically.

(46): Here we can assume without loss of generality that G = T¢. Denote

s
’

V(& vy, 5, 2) = 02 [Au((z, ), (', 7)) = Dul(®,5), (', F o=

(see Subsection 3.2). To show that generically h(g) = R?, it suffices to show that
(always) for any x € M

v . = o
Range (?E(e, Y :v)) =R%.
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But
b v

?j?(é’ 17’ :&7 .’L‘))((ST) = 6(67-7 T, ?77 é') - @(67-w T, 37» é)

where ©(7,...) is defined by (16). Now let U be a small ball in M and y, § be
two sequences such that the preimages of x corresponding to y visit U exactly
once (say =; = 0~ 7z) and no preimage of z corresponding to § visits U. Let
67 = ¢(x)¥, where supp ¢ C U and 7 € R%. Then 2X(&,7, 4, 2))(07) = (8p5-156)7
and such vectors span R?. |

4. Subshifts of finite type

4.1. CONTENT OF THIS SECTION. In this section we study mixing rates of
compact group extensions of one-sided subshifts of finite type.

The key notion of this section is that of Diophantine subset discussed in
Appendix A. To state our results we need some auxiliary notation. If w® is
a two-sided sequence, let T';(w®,11,12) be the set {g(W)} for all t-chains W =
(whw!, ..., wh), w = wP such that | < Iy, and if w/*t! € W?(w?) then (o2wi 1),
= (o"2w%),, and if Wt € W¥(w’) then (72witY)_ = (07'2w’)_, where
wy (w-) denotes {w; };>0 ({wj}s<0)-

THEOREM 4.1 (Mixing): If for some w®, 14,15, T(w®,11,15) is Diophantine, then
VA, B € Cy(ZY)

n

B(k)
(47) 1Pa.a(n)| < Const | Alls|[Bll (1) ,

where (k) — oo as k — co.

THEOREM 4.2 (Characterization): If (47) holds, then T'y(w°,1,,15) is Diophan-
tine for any w® for large 11, ls.

THEOREM 4.3 (Prevalence): The set of 7’s such that T'y(w, l1,l3) is Diophantine
for large 11,15, contains an open and dense subset of Cy(EF, G).

Remark: This result can be rephrased by saying that a generic skew product
over a one-sided subshift of finite type is stably rapidly mixing,.
4.2. DECAY OF CORRELATIONS.

Proof of Theorem 4.1: Without loss of generality we may assume that [ A(z)dz
= 0. Let

= 7 L(ﬁ)
H||y = max (||H
| H | (|| lo, Const B )
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where L(H) denotes the Lipschitz constant of H as an element of Cp(S+, L2(G))
and Const is chosen in such a way that ||£3}|/x < 1 for large n (cf. the proof of
Proposition 3.16) We need the following estimate.

PROPOSITION 4.4: ||£L%]|x < Const l/\lﬂ‘(l — A7)
COROLLARY 4.5: If A € Cry and [ A(w,z)dp(w)dz = 0, then
(48) [1£7Allo < Const | A]jxn~P®),

B(k) > oo as k — oo.

Clearly this corollary proves Theorem 4.1. |

Let us first derive Corollary 4.5 from Proposition 4.4 and then return to the
proof of the proposition.

Proof of the Corollary: We have
L(A,) < ||A||x Const |A| and ]|Axlo < Const ||Al|x|A| 7
where 83 — 00 as k = co. Using the bound (see [37] or Proposition 3.16)
L(LH) < Const |A|(|Hllo + 6" L(H))

we obtain
L (LSonstln],\Iﬁ) < |/\|—53+2

if Const is large enough. Hence

., n—Const In |A
IIC2H| < Const |A|P: (1 - |A|—ﬂ2) .

Also, we always have [[L%Ax]lo < [|Aallo < [|All||Al]=P2. Thus

|7 Allo < Z 1£XAxllo + Z llAxllo-

IAl<n 32 IAI>n 352
The first term is at most Const ||A]|ze~V™ while the second does not exceed

Al 3" AT < Const [Alin~?®.  u
l)\l>n%52

Proof of the Lemma: Set m(A) = [CyIn|A|], m(A) = m(A) + [z where the
restrictions on C; will be clear later (see Lemma, 4.7).



Vol. 130, 2002 COMPACT GROUP EXTENSIONS OF HYPERBOLIC SYSTEMS 185

LEMMA 4.6: IfVH such that |H|[x <138, > 0,w € £ and m < m(A) so that
P H (W) <1 - |A|™#*, then the statement of Proposition 4.4 is true.

Proof: Repeat the proof of Lemma 3 from [20]. (See also the proof of (1)=(4)
in Theorem A.2.) |

So we have to prove that for 34 large enough the conditions of the Lemma are
satisfied. So take some H with [|lH||x» < 1. So we assume that

(49) LA™ H)(@)llo > 1 — A

for m < m(A) and get a contradiction. Consider two points @, such that
0™ = 0™ = w. Consider (LT H)(w).
Among other terms it contains
eI O (1 (@) H (@) + €7 Oy (10 (@) H (@).
(49) implies that

—

(67 s (1 (@) H (@) + e @y (1 (@) H@)]| >
(1= AP lefm @y (10 @) H(@) | + llePm @ (70(@) H (@)

Therefore em @ x, (1,,, (@)) H (@) and efm @) gy (1,,, (@)) H (@) are almost collinear.
That is

(50) 17 (7 (@) H (@) — ma (1 (@) H@)|| < CA~7%,
Bs — 00 as B4 — 00. Denote by w(m, j) a one-sided sequence
(w(m’j))l = wzj—m'

Let A2 = Hw(m(}),j)), K7 = mA(Tm(ryw(m(A), )))H. By assumption IW
such that g(W) satisfies (60) with H = K°.

LEMMA 4.7: If H satisfies (50), then
(51) BT+ — ma(g(w?, 1) K| < CA—Po

where B¢ — o0 as C1 — oo.

Proof: Consider the following two cases:
(1) wi*! € W*(w’), then applying (50) with @ = w(m(}),5), @ = w(m(N), ),
m = m(\) we get

KT+~ ma (MW )m, (W) K| < CAPs.
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(2) If wi*! € W*(w?), then
| B+ — H|| < Const 8™M~% || H||y < Constg™MA.
Using the relation between H7 and K7 we get
185 = 1 (1 (@(m). 5+ D)y (m(, 1)) B2 < Const 6N,
but
[Ty @A), 3 + )i @A, ) = Auw?, w7*)| < Const ™)
while ||7x(g) — 1|| € A, which completes the proof. ]
Adding (51) for all j and using K* = K° we get
Ima(g(W)E® = K°|l < C(B)A0,

where g can be made as large as we wish by choosing C) large, which contradicts
the Diophantine condition. Hence Proposition 4.4 is established. i

COROLLARY 4.8: For G semisimple, ergodicity implies rapid mixing.

Proof: T, acts transitively on X. Since

U Ft(wo,ll,lz)

1,12
generate I'y(w®), Corollary A.5 shows that I';(w®,11,15) is Diophantine for large
I, 1s. |

4.3. CHARACTERIZATION OF RAPID MIXING.

Proof of Theorem 4.2: By the results of Section 2, we can assume without
the loss of generality that T' is reduced. Because T is mixing the only way
T'4(w®,11,12) can fail to be Diophantine is that p(T'y(w®,1,12)) is not Diophantine
on [T, T4]\X. Hence we may assume from the beginning that G = X = T%. Fix
l1,15. If Ty(w®,11,12) is not Diophantine V3 3 : YW

1
il

lexp(2i(, g(W))) — 1| <

In particular (Proposition 2.4) Vw!, w?

1
L

lexp(2mi(m, 7(w') — T(w?))) — 1] <
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Thus ¢y such that

n

lexp(27i(172, o (w))) — exp(2migo)| < Ak

If B is large enough this is incompatible with (47) for A(w,t) = B(w, t) = >"H1),
|

This statement has several nice corollaries.

Definition: Call T locally transitive if there are w®{;,lz such that
[4(w014,12)xo = X for any zo € X.

Let T, be the maximal abelian subextension of T'.

COROLLARY 4.9: If T is ergodic, then it is rapidly mixing if and only if its
maximal abelian subextension is rapidly mixing.

Proof:  This follows immediately from Theorems 4.1, 4.2 and Corollary A.7.
|

COROLLARY 4.10: The property of rapid mixing does not depend on the Gibbs
measure in the base.

COROLLARY 4.11: If T, is locally transitive then T € RM.

4.4. PREVALENCE OF RAPID MIXING. This subsection complements the results
of Appendix A in the following way. In the appendix we show that Diophan-
tineness is generic in a measure theoretic sense. However, for toral action, the
opposite property is topologically generic. Therefore, even though most of fi-
nite sets are Diophantine, the corresponding constants behave rather irregularly,
which makes this result of limited value. However, our condition in Theorem
4.1 involves a much larger group (namely, the group of all closed t-chains). This
explains why Theorem 4.3 holds.

Proof of Theorem 4.3: Clearly, it is enough to consider the action of G on
itself by translations. We again reduce the problem to the toral case. Indeed,
it follows from the results of Appendix A that for an open and dense set of
extensions, I+ D [G,G]. Hence we can factor it out and end up with toral
extensions as claimed. (We could also appeal here to [27] and Corollary 4.9.) So
let G = T¢ = RY/Z¢. In this case I';(w) does not depend on w by Proposition
2.2, so we will move the base point freely. We will consider the simplest t-chains
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— (1,23 4 1_ 2 _ 3 _ 4 1 _ 2
of the form W = (w',w?,w?,w?*) such that wy = w§ = w§ = wg and wy = wi,

w? =wi, w =w!, w? =w3. So welet
‘p(wl’w2aw37w4) = g(wlaw27w3,w4)
(o)
(52) = 3 [reioh) = r0?) + 7o?u) ()]
J=—o0

We will write @, if it is not clear which skewing function is used. Recall that we
consider the case 7 € C*(X). The following bound is immediate.
PROPOSITION 4.12: IfVj, k d(w’,w*) < 8N then

p(w!,w?, w? w*) < Const 2V)|7].
Proof: As w} = w2, w3 = w}, all positive terms in (52) vanish. The first
non-negative term corresponds to j = —N. |

Fix some element « of our alphabet. If ng is large enough, we find (d + 2)
periodic points w?...w9*2 of prime period ny such that wj = o and their orbits
do not intersect. Let ax!,ak?,... ax®? be the corresponding words of length
ng. Let &4 = (ak®1)P, &, = (ax®?)? . Finally, denote by C;n the cylinders
CiN = C(ars)2n+2. We consider perturbations of 7 of the form

d o0
(563) F=71+ Z €; Z end*™xc,,
Jj=1 =1

with |ej;| < e. We prove that for any € we can make 7 satisfy the conditions of
the proposition. We will choose parameters €;; by induction. Assume that we
have already defined {eji}i<n. Let

WM = €_(ar?)VH(an))VHIEL, WV = € (an!) N |(and) N HIE,,

W = ¢ (aw))N|(aw))Vey, WM =€ (an?)V T |(ar)) Ve,
(here | is used to mark the place before the zeroth letter). We have

N . . . .
(P-r(UJJ l’w]N27wJN3’w]N4) +gaT(l,N_l)(w’Nl,w]NZ,w’N3,w’N4)

N1, jN2 §N3 jN4 iN1 N2  jN3 jN4
+ovmy (@ N W T WY b o vt e) (W P 0T W),

05 (w]Nl’ wJNZ, wJN3, w]N4)

where the second term corresponds to the summation from 1 to N — 1 in (53),
the third one corresponds to the N-th term and the last one corresponds to the
remainder. Now

Dr(N+1.00) (wJNl7 w]N2, w]NB, w]N4) =0
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as no w?N¥ contains (ax!)2VN*1. Also

N1  _jN2  3N3 , N4 2Nn
@rvomy (W WIS W W) = g5 n 05 e
Let
iN1 , jN2 , gN3 , jN4 jN1 _ jN2 , 3N3 N4
@ (W IR W WYY vy (WP W WIS VY
nJN— 92Nn0

By Proposition 4.12, n;n is less than some constant E. So
o7 (WL, WV GIN3 ING) = 2Nno (min +€5ne;)
The next statement follows immediately by compactness arguments.
PRrOPOSITION 4.13: Let d,¢ be fixed. There is a constant 6 such that we can
always choose €;n € [~¢,¢€] so that
[Vol(mn + e1n€1,-- -, MaN + Eaneq)| > 26.

Thus 7 and its small perturbations will satisfy

1N1 1IN

Z,wl

go;(w , W NB’wlNl) (p-,—-(del,de2,de3,de1)
Vol 3N ey 2N
(54) >4
Also, if T is close to T then
55 - ijl,ij2’ij3’w]N4 < 2E.
P

We claim that (54) and (55) guarantee that the set
{(p(ijl, ijZ’ w]N37 ij4)}‘;?Vo:11

is Diophantine. Indeed, take some 7. Let K = maxm;. Take minimal N
such that FG?V™ < 1/100dK. Then |(m, p(wV1, wiN2 wiN3 IiN4))[ < 1/50.
So in order for exp[2mi(m, p(w! N, WINZ WIN3 LIN))] to be close to 1, this
product has to be small. However, this is impossible for all j. Indeed, if
(172, p(wIN, wiN2 (yIN3 (;3N4))| < § then all the vectors

N1 . .
Lp(wj )w]N27w]N37wJN4)
02N'I’L0

are confined to the cylinder whose base has radius 2F and is perpendicular to 17
and whose height is 200Edd. If 4 is small enough this is incompatible with (54).
This completes the proof. |
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Remark: In the toral case we consider the same perturbation as in [39] but we
analyze its effect more carefully. In fact, for extensions over symbolic systems it
is not true that stable ergodicity implies polynomial decay of correlations. For
example, let T be the full two shift, G = T" and 7(w) = 3, ™ Xc,,,n, (w). Then
if n; grow very fast, we can approximate 7 very well by locally constant functions,
so the decay of correlations in this example can be arbitrary slow. Instead, stably
ergodic systems have the property that Iy, = v,(7) = 0,k = k() such that if
T is close to 7 then

16.4,8(n, T)| < [ Allell Bllxya-

Nor it is true that rapid mixing is stable. For example, consider the set of T’s with
skewing function locally constant with fixed number of domains of the constancy
(still G = T?!). Then almost all T’s in this set are rapidly mixing, but the set of
the transformations not having this property contains a countable intersection of
open dense sets.

5. Axiom A

Here we finish the proof of the theorems given in the Introduction. Theorem 1.1
follows immediately from Theorems 4.1 and 4.2 via the reduction described in
subsection 2.5. Likewise Corollary 1.3 follows from Corollaries 4.8 and A.6(b) and
Corollary 1.4 follows from Corollary 4.9. To prove Corollary 1.2 more arguments
are needed, since a perturbation inside subshifts of finite type can be done more
easily than for Anosov diffeomorphisms. We shall use the following result of
Burns and Wilkinson:

PropPoOsITION 5.1 ([17], Theorems 9.1 and 12.1): Let F: Y — Y be an Anosov
diffeomorphism of an infranilmanifold and T be a compact group extension of F'
with X = G. If T is stably ergodic then it is locally transitive.

Proof of Corollary 1.2: If T € Int(ERG) then, in particular, T € ERG and
so T € RM if and only if T, € RM. So we can assume from the beginning
that G = T¢. Then we can also suppose that X = G. So, after all reductions
we have T(y,z) = (F(y), 7(y)z) where F is Anosov, Y is infranilmanifold and
X =G = T¢. In this case Proposition 5.1 shows that T is locally transitive and
we are done by Corollary 4.11. |
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6. Applications

Here we derive some consequences from our bounds for correlation decay. More
applications will be presented elsewhere [23].

6.1. CENTRAL LIMIT THEOREM.

COROLLARY 6.1: Under the conditions of Theorem 1.1 there exists k such that
VYA € C*¥(M) the sequence {A(T™(y,x))} satisfies the Central Limit Theorem
(CLT):

Proof: By (10} it is enough to prove CLT for extensions of subshifts of finite
type satisfying Theorem 4.1 and A € Cy,(E%). Recall [35] that if T is an
endomorphism of a measure space (M, v), then the following conditions suffice
for CLT:

(a) Z‘ / A(m)A(Tm)dy(m)[ < o0

and
(b) >, (U*™A)(m) converges uniformly, where U* is the dual to

(UA)(m) = A(Tm).

In our case, (a) follows by Theorem 4.1 and (b) follows by Corollary 4.5 since
in our situation U = L. |

6.2. EQUIDISTRIBUTION OF THE LEAVES. Here we provide an estimate for
equidistribution of the images of local unstable manifolds under the conditions
of Theorem 4.1. But first we should pass to functions in Cy(X) rather than
Crp(XY).

COROLLARY 6.2: Under the conditions of Theorem 4.1 for any pair A,B €
Cr6(X)
154,6(N)| < C||Allk i Bllo,eN ¥,

B(k) = oo as k — oc.
Proof: Plug the estimate of Theorem 4.1 in equation (9). |

COROLLARY 6.3: Under the same conditions

154,8(N)| < CllAlloll BllxaN~P®).
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Proof: Replace T by T~ 1. |
Now we provide a quantitative version of the K-property. Let
Wige(@) ={w:w_=a_}.

On Cg, write ([32]) dp(w) = J(w)dp4(wi)dpu_(w-). Denote

/ H/ H () () dp ().
(@) Wy (@)

loc

PROPOSITION 6.4: If a € Cy(X, X) then

/ B(TN (w, a(w))) —)/B(w,x)du(w)dx
W,

{oc

Proof: Let ¢ be a cutoff function concentrated on [-1,1]¢. Let Ic denote the
indicator of C. Set

Ic_..a(a;)( )qs(‘e"—":&»

AP (g ) = .
7(w) (fx Pt g )mc_n,o(a»»

Then ||Aljg.,0 < Const K"e~? and [ A (w,z)dp(w)dz = 1+ O(6™). Also, if
(w,z) € supp A(™®) then

|B(TN (w, 2)) — BTV ([@,w], a([@, w])| < Const(6" +¢).
Therefore

paer 5(N) = / B(T™ (@, a(w)))(1 + (8" +¢)).

u
loc

On the other hand
paer 5(N) = / (w, 2)dp(w)dz(1+ 06" + €)) + O(Ke~yw),

where

|pa,B(N)|
1 Allg,oll Bllox

Comparing these two estimates we get
(57)

\/ " B(TY (w, a(w )))—]B(w,w)du(w)dm < Const(0"+e+0(K"e~4yn).

(56) YN = sup
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Remark: The above argument comes from [8] (cf. also [24]).

COROLLARY 6.5: Ifa € Cy(X, X) then

< Const ||B\|k,9N‘5(k).

‘/ . B(TN(‘”va(w)))‘/B(w,w)du(w)dcc

loc

Proof:  Use Corollary 6.3 and equations (56) and (57). |

6.3. RANDOM WALKS ON HOMOGENEOUS SPACES. Let X = G/H. Take a
finite set W = {g1,92,-..,94} C G and let § = {p1,ps,...,p4} be a probability
distribution on W. Consider a Markov chain with the initial distribution dz and
Tn = g;Tn—1 With the probability p,. Denote by g5 and g7 the projections of g; on
G/|G,G] and G/ Center(G), respectively. We say that z,, satisfies CLT if there
is r > 0 such that for any function A € C"(X) with zero mean (Z;L;Ol A(z;))//n
converges in distribution to a Gaussian random variable with zero expectation.

PROPOSITION 6.6: Qur Markov chain satisfies Central Limit Theorem if and
only if

(58) (W?®) = G/ Center(G)
and
(59) {95 — g} is Diophantine.

Proof: (1) Suppose that (58) and (59) are satisfied. Consider the subshift of
finite type with alphabet W, transition matrix A, = 1 and measure p(Cyy, .. 1, )
= ]—[;:1 Pw,- Consider the skew extension with 7(w) = gu,. Since T' is reduced,
L. is generated by {g,} and T'; is generated by {g;9; '), Thus T is ergodic, and
by Corollary 4.9 and Theorem 4.1 it is rapidly mixing. Thus, by Corollary 6.1,
z., satisfies CLT.

(2) Let z, satisfy CLT. Then < W > is ergodic, since otherwise there would
exist a non-constant W invariant function A of zero mean and so (Z?;OI A(z,))/n
would not converge to 0 in distribution. Thus (58) holds. If (59) would fail there
would exist m; — oo such that

lexp[2mi(my, (g7 — gf))] — 1| < 1/my.

By passing to a subsequence, we can assume that my4q > m,z’"’LB. Let

1 o
Alz) = Zelwexppm(ml,x ),
i {
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where ¢; € {0,1} and z* denotes the projection of z to X/|G,G]. Then

m;h‘+6

> Alzs) = m(zo) + evm] Hexp[2mi(my, 7)) + O(m; ),
j=1

where ¢ = (r +2)(2r + 8) — (r + 6) = 2r2 + 11r + 10 and +; depends only on

€1,€2,...,€1—1. Thus we can choose ¢; in such a way that
2r486
™ A(z;)
Z j= my 1
Prob (&=L V5 LY > o
ml""3 4 | — 2

and so A does not satisfy CLT. ]

7. Conclusions

Here we describe how the results fit into the general theory of weakly hyperbolic
dynamical systems and present some open questions related to this subject.

7.1. MIXING RATES OF SKEW EXTENSIONS OF AXIOM A DIFFEOMORPHISMS.

QUESTION: Is stable ergodicity (stable rapid mixing and so on) generic in the
space of compact group extensions of Axiom A diffeomorphisms?

This question is easier when the set of non-wandering points of the base trans-
formation is large, for example, when it is connected (see [26]). On the other
hand, nothing seems to be known if the base is a horseshoe, especially in higher
dimensions.

There are also some questions on the optimality of the bounds we have
obtained.

QUESTION: Is exponential mixing generic among compact group extensions of
(say, volume preserving) Anosov diffeomorphisms?
QUESTION: If G is semisimple and T is mixing, is it also exponentially mixing?

More generally, in the case when a non-wandering set of F' is large, there are
not so many situations where we can get an asymptotic of the mixing rate.

PRrROBLEM: Construct some examples where correlation functions could be
computed explicitly.
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7.2. PARTIALLY HYPERBOLIC SYSTEMS. It is interesting to see how much of the
theory presented here can be extended to general partially hyperbolic systems
where the central bundle is generated by the orbits of some symmetry group.
Examples of such systems include frame flows on compact negatively curved
manifolds (or products of such manifolds), systems obtained by applying compact
extension construction several times, e.g., nilpotent extensions, etc. (see [15] for
more discussion).

PROBLEM: Generalize the results of Section 2 to compact group extensions of
partially hyperbolic systems with accessibility property.

See [34] for some results along these lines.

More generally, here as well as in [20, 21], we showed how to derive mix-
ing properties of transversely hyperbolic systems with symmetries from the the
property of the holonomy maps along short loops (the first result in this direction
appeared in [18]). One can ask what can be said about more general partially
hyperbolic systems. The best result in this direction so far is a theorem of Pugh
and Shub [41] saying that partially hyperbolic volume preserving dynamically
coherent and center-bunched systems with accessibility property are K-systems.
In particular, they enjoy mixing of all orders.

QUESTION: Let f: M — M be a map satisfying conditions of Pugh and Shub
and, moreover, be locally transitive. What can be said about its rate of mixing?

In the context of skew extensions of Axiom A some results are given by
Theorem 1.1 and Corollaries 1.2 and 1.3. Similarly one should compare results
of [16] and [21].

In full generality this question seems to be very hard, but an advance in this
direction would drastically increase our understanding of partially hyperbolic
systems.

QUESTION: Does there exist a stably ergodic diffeomorphism which is not mix-
ing? Could the mixing rate of a stably ergodic diffeomorphism be arbitrary
slow? Could one get a uniform bound on the mixing rate of a stably ergodic
diffeomorphism?

Another question along the same lines is

QUESTION: Must a stably ergodic diffeomorphism be Bernoulli?  stably
Bernoulli?

At present not much is known about stably Bernoulli systems apart from some
examples constructed in [2, 5, 45].
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7.3. SKEW EXTENSIONS OF NON-UNIFORMLY HYPERBOLIC SYSTEMS. In recent
papers [48, 49] Young introduced a class of non-uniformly hyperbolic systems
which have statistical properties similar to that of Axiom A attractors.

PROBLEM: Generalize the results of this paper and [21] to the compact group ex-
tensions of non-uniformly hyperbolic systems satisfying the conditions of Young.

Examples of systems one would like to understand along these lines are billiard
flows, frame flows on manifolds without conjugated points.

7.4. RANDOM WALKS ON HOMOGENEOUS SPACES. The next question deals
with improving estimates of the Appendix.

QUESTION: In the case G is semisimple, give more information about the
spectrum of the operator J defined in (61).

So far, in all the examples where estimates could be obtained J has a spectral
gap. See [29] for the survey of known cases as well as some numerical simulations.

Other questions deal with the situation of Subsection 6.3 without the
assumption that G is compact.

PROBLEM: Give necessary and sufficient conditions for ©,, to satisfy CLT.

This question appears to be hard especially if < W > is nilpotent, but still it
is possible that a nice characterization could be obtained for large class of pairs
(G, X).

QUESTION: Is it true that generically x,, satisfies CLT?
Some important special cases are studied in [6, 31].

7.5. NON-RAPIDLY MIXING EXTENSIONS. This subsection deals with the
classification of non-rapidly mixing extensions. For example, if Y is an infra-
nilmanifold and F: Y — Y is Anosov and X = G, Corollary 1.2 tells us that
stably ergodic maps are rapidly mixing. Now by [17] non-stably ergodic exten-
sions can be characterized by the fact that by a coordinate change T can be
reduced to a subextension with skewing function 7(z) belonging to a coset of a
proper subgroup of G. Our Theorem 3.3 has a similar conclusion.

QUESTION: Is the same conclusion valid without the assumption that X = G?

Some special cases are analyzed in [12].
Another question deals with a geometric characterization of exponential mixing
similar to our Theorem 1.1.
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QUESTION: Does exponential mixing depend on which Gibbs potential we
consider?

We plan to address some of these problems elsewhere.

Appendix A. Diophantine approximations

Here we study some problems related to Diophantine approximations. Let a
compact group G act transitively on a manifold X. Let H, denote the s-th

Sobolev space: if f =3, fa, fa € Hy, then [|f]|2 = 3, [Ifa]l22A%. || - || will
denote L2-norm. Recall that 7(g)f denotes

[n(9)f] () = f(g™"2).

Definition: A subset W C G is called Diophantine if a1, Cy so that Vf € H,,
A # 0, g € W such that

(60) A =m(g)fll = CLaA™* £l

We shall say that W is Diophantine on X if it is not clear which action of G
we are considering.
Recall that (W) denotes the smallest Lie subgroup of G containing W.

PROPOSITION A.1: (a) If W is Diophantine then (W) acts transitively on G.
(b) W is Diophantine if and only if W | JW ~! is Diophantine.

Proof: (a) is clear, since otherwise there would be a (W)-invariant function.

) [ -m@)flz Crx™Iflel —a@ DIl = Cafl.

Now we consider the case when W is a finite set: W = {g1,92,...,94}. Let
S, denote the set of all words in W and W~! of length at most n : S, =

{gilgily e gil}kgn. Define
1
(61) J(f) = (—lzw(gl)f.

=1
Let C§°(X) denote the space of C*°-functions on X with zero mean.

THEOREM A.2: The following conditions are equivalent:
(1) W is Diophantine;
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(2) 1 — J is invertible on C§°(X) and there is a constant o such that for all s
there is a constant C, such that

”(1 - J)_lf”s < Cs”f”s+a2;

(3) 3C3, a3, o such that Ve, Sic,(1/¢)es)%0 is an e-net in X;
(4)3C4, a4, such that Yzo Ve, Sic,(1/¢)24]%0 is an e-net in X;
(5) 3Cs, a5 such that Vf: [ f(z)dz =0, [|f(z)|? dz =1, |Af(z)| < A2, there
are g € W and zg € X such that |f(xo) — f(9z0)| > CsA™ 8

Proof: (1)=>(2) For f € Hy

(62) (11~ J15,4) = 5 301 = w(@l, 1)
!

Let j(f) be an index such that
10~ {1 = AL
Since each term in (62) is positive
(= J15,1) > 301 = (g1, £) = GO = (rlgzen)f, 1)
= L= w2 Shame g,

(2)=>(4) We have to find N such that for all z,y there is ¢ € Sy such that
gB(z,e/2)(\B(y,e/2) £ 0. If f,h € Hy then

(7 = Y1 = 7)75, )] < Const 7ol -

Take f,h € C>(X) such that supp f < B(z,e/2), supph C B(y,e/2),

f,9 20, [f(z)de = [g(z)dz = 1 and |f]lo, [hllo < Conste™, ||f|l2, IAll2
< Conste~™=2 where m = 1dim X. Decompose f =Y, fi, h = Y., hx, where

I, hy € Hy. We have
1 N
= ka,h)— f(z)dz | h(z)dz
() - [ s |

1,

—N"Jkfh) -1 =

(7 se)
1,
(N,; i

<2
(307 = 91,00

A#£0

-5

A#£0

= (1) + (1),
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where in (I) the sum is taken over A < Ag and in (II), A > Aq.
A% A%
(I) < Const — > IfallollBallo < Const ¢ m,
(I < 3 Ifsllolikallo S X5* D Iallzliballa < Agte™>m+4.

A>Xp A>Xo

Take Ag = e~ 2m+5)/4 N = A\@’¢=2m—1_ Thep

LN
k
k=1
so for some k, (JEf,h) > 0 and hence 3¢ € Sy such that

9B(z,/2)(|Bly,e/2) # 0.

Therefore Syx is an g-net in X.

Clearly (4)=(3).

(3)=(5) Let N = [C5(1/e)*#]. Take g € Sy such that |f(gza) — f(zo)| > 1.
Let g = g;lg;2 .. .gfl’v", where ¢, € {~1,+1}; then

Z]f git--givw) = flgi . give)|.

— 1} < Const e,

So at least one of the terms is greater than 1/2N;
(5)=(1) Let f € H. By the Sobolev Embedding Theorem

IV £llo@xy < CAP.

Thus if | f(go) — f(z0)| > CsA~%5, then for z € B(zo, A~ (2s+A))

Flgz0) = Flao)) > EAmes

and so [ [f(gz) — f(z)|* dz > Const A™7, v = (a5 + B) dim X + 2as. [ |

We now turn to the case when G is semisimple, X = G and the action is left
translation.

THEOREM A.3: W is Diophantine if and only if (W) = G; moreover, there is a
constant €g = €o(G) such that any eg-net in G is Diophantine.

Proof: In view of Proposition A.1 we only have to prove the “moreover” part.
We proceed by induction. Start with some small ey and consider ng so that Sy,
is an gg-net in G. Define

ei1 = (Ceg)*?, mjsn = [Cnge; o).
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Assuming that C,C are large enough we show that Sn,4, is an g;j41-net if Sy,
is an €;-net. Consider g with an invariant scalar product. We say that a basis
{Xx} is aligned if

() 3 <Xkl < 2

(b) £(Xk, X)) > w/4.

If &; is small enough, there is an aligned basis {X ,(cj )} such that

:v,(cj) = exp(€§/3X,£j)) € Sy, -
Thus
2) =[50, 5] = exp (£°[XP, XP] + O(e})) € S1,-
Now the space of all aligned bases is compact and [g, g] = g, so we can extract
from {[X,(cj),X,(j)]} a basis {Y,Sf)} so that

(63) ca <Xl <er £(Xk, Xi) > cs.

By the same argument the set of the bases satisfying (63) is compact and so,
given 4§, we can find Cy,Cs,C3 > 1 such that VY: Cy < ||Y]| < C; Jai € Z,

|ag| < Cj5 such that
W‘Z%W)
k

So if &; is small enough then 3C7, Cj, C§ such that Vy : C{s;/ ? < dist(y, id) <
Cés?m Jag € Z, |ak| < Cf such that dist(y,]—[kl(:vfg,))““) < 55;1/3. We are now
ready to establish our claim. Choose a neighborhood U of the identity in G’ and
introduce a coordinate system on U. Partition U into coordinate cubes U = | J, C:
of diameter C_’e;/ 3 By assumption V¢ 3¢": Cy N Sn, # 0 and dist(C;,Cy) <
Conste,. Thus we can join Cy and C; by a chain Cy = C(®,c, ... ,c™) =,
of at most Const ej"l/ 3 elements. Now if C is large enough, the considerations
above imply that 3C such that if S, 1C® # 0 then Snicm, NCO+Y £ (. Let
N; = ansj_l/s. Then Sy, intersects all C;’s and so is an €;3-net in U. But if
€¢ is small enough then S, U =G. |

< 8|y

To pass to the general case we need a slight generalization of this result.
PROPOSITION A.4: Let G be a compact group and W C G be a finite subset.
Then

(a) W is Diophantine on (W)/ Center({W));

(b) dim[(W), (W)] is a lower semicontinuous function on G'W1.

Proof:  (a) is a direct consequence of Theorem A.3 since the group
(W)/ Center((W)) is semisimple.
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(b) We establish the following statement
Let H C G be a semisimple Lie subgroup, § = L(H), then Jeo such that if
X, ... Xk is a basis in b such that

(A1) max(||X;1}) < 2min(|1 1), £(X0X5) > 7,

| X5l < eo then YY1...Yy such that ||Y; — X;|| < eol|X;l|, the group F =
< {exp(Y;)} > satisfies dim([F, F]) > dim(H).

The proof is by induction on codim(H). If H = G this follows from Theorem
A.3. For inductive step let y;-l) = exp(Y;). We proceed as in the proof of Theorem
A.3 constructing y§~m) = exp(Yj(m)) € [F, F] where l/J(m) satisfy (Al) and their
norms decrease with m. Let § be a sufficiently small constant. There are two
cases:

(1) Vm, j Z(Y](m), bh) < 4. The proof is completed as in Theorem A.3.

(2) 3m,j such that A(Yj(m),h) > §. Consider the one with minimal m. Let
L(G) = h + b1 + by, where ad(H) = 0 on by and is non-degenerate on hy. It is
easy to see that ||7r;,1Yj(m)H > 6 ||Yj(m)|| /2. Then the statement follows from the

inductive assumption applied to L(Yq,... Y, Y](m)), ]
Now we can dispose of the assumption that W is finite.

COROLLARY A.5: Let G, X be as above. For infinite W the following conditions
are equivalent:

(1) W is Diophantine;

(2) W contains a finite Diophantine subset;

(3) (W) = G.

Proof: We already know that (2)=(1)=-(3). On the other hand, the proof of
Theorem A.3 shows that if €¢ is small enough then any e¢-net is Diophantine. So
if (3) holds, then S,, is an go-net for some ng and we can extract a finite subnet,
V C S,,- Now if W’ is a finite subset of W such that (W') D V, then W' is
Diophantine by Theorem A.3. |

Remark: The above statements fail for the torus. For example, the set of all
elements of finite order is Diophantine but it obviously does not have finite Dio-
phantine subset. On the other hand, there are plenty of #’s such that ({t}) =T
but {t} is not Diophantine.

COROLLARY A.6: Let X be an arbitrary transitive G-space (G semisimple).
Then
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(a) W is Diophantine iff (W) acts transitively on X.
(b) If W is Diophantine and W is close to W in the Hausdorff sense, then W
is Diophantine.

Proof: (a) follows from Proposition 2.8(b) and Proposition A.4(a); (b) follows
from (a), Corollary A.5 and Proposition A.4(b). ]

COROLLARY A.7: Let G be any compact group and X be a transitive G-space.
Let p: (W) — (W)/[(W?),{(W)] be the natural projection. A set W is Diophantine
iff (W) acts transitively on X and p(W) is Diophantine on (W), (W)\X.

Proof: Let W be a set satisfying the conditions of the corollary. Suppose that
VN there is a sequence fy € Hy, such that |[fx — 7(g)fn| < CAY" for ge W.
We want to get a contradiction if NV is large enough. By Corollary A.5 and the
proof of Theorem A.3 there is a finite set W C S,,(W) such that W c [W, W]
and W generates [G,G)]. Let f(x) denote f = f[G7G] fn(gz)dg. Then Vg € W,
7 = m(g)fwll < CARY, for

fwton) = [ futhgnin= [ fulo(o™ hgo)dh = Ty o 9)(o)
G] [G,G]

By Corollary A.5, W is Diophantine on [G, G] so there are constants C(W), 8(W)
such that ||fx — fn|| < C)\x_ﬂ. But fy can be regarded as a function on
(W), (WY\X, so 3g € W such that ||7(g)f — f]| > Const~>™), a contradiction
ifN>a+p. |

Remark: This corollary yields quite a comprehensive criterion for an action
to be Diophantine. Indeed Diophantine subsets of tori are well studied. Also,
topological generators of semisimple groups are well understood. For example,
[4] proves that for a semisimlple G, pairs generating G form an open dense set.
Hence we have

CoROLLARY A.8: Let G be a compact group acting transitively on X. Then
almost all two-point sets are Diophantine.

References

[1] R. Adler, B. Kitchens and M. Shub, Stably ergodic skew products, Discrete and
Continuous Dynamical Systems 2 (1996), 249-250; Correction 5 (1999), 456.



Vol. 130, 2002 COMPACT GROUP EXTENSIONS OF HYPERBOLIC SYSTEMS 203

[2] J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic
systems whose central direction is mostly expanding, Inventiones Mathematicae
140 (2000), 351-398.

[3] D. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature,
Proceeings of the Steklov Institute of Mathematics 90 (1967), 1-209.

[4] H. Auerbach, Sur les groupes lineares bornes (III), Studia Mathematica 5 (1934),
43-49.

[5] C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose
central direction is mostly contracting, Israel Journal of Mathematics 115 (2000),
157-193.

[6] P. Bougerol and J. Lacroix, Products of random matrices with application to
Schrodinger operators, Progress in Probability and Statistics 8, Birkhauser,
Boston, 1985.

[7] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,
Lecture Notes in Mathematics 470, Springer-Verlag, Berlin—-New York, 1975.

[8] R. Bowen, Weak mixing and unique ergodicity on homogeneous spaces, Israel
Journal of Mathematics 23 (1976), 267-273.

[9] R. Bowen, On Axiom A diffeomorphisms, American Mathematical Society
Regional Conference Proceedings 35 (1978), 1-45.

[10] M. Brin, Topological transitivity of one class of dynamical systems and flows of
frames on manifolds of negative curvature, Functional Analysis and its Applica-
tions 9 (1975), 8-16.

[11] M. Brin, Topology of group extensions of Anosov systems, Russian Mathematical
Notes 18 (1975), 858-864.

[12] M. Brin and M. Gromov, On the ergodicity of frame flows, Inventiones Mathe-
maticae 60 (1980), 1-7.

[13] M. Brin and Ya. Pesin, Partially hyperbolic dynamical systems, Mathematics of
the USSR-Izvestiya 8 (1974), 177-218.

[14] L. Bunimovich, On one class of special flows, Izvestya 38 (1974), 213-227.

[15] K. Burns, C. Pugh, M. Shub and A. Wilkinson, Recent results about stable
ergodicity, Symposia in Pure Mathematics 69 (2001), 327-366.

[16] K. Burns, C. Pugh and A. Wilkinson, Stable ergodicity and Anosov flows, Topology
39 (2000), 149-159.

[17] K. Burns and A. Wilkinson, Stable ergodicity of skew products, Annales Scien-
tifiques de I"'Ecole Normale Supérieure (4) 32 (1999), 859-889.

[18] N. Chernov, Markov approximations and decay of correlations for Anosov flows,
Annals of Mathematics 147 (1998), 269-324.



204 D. DOLGOPYAT Isr. J. Math.

[19] 1. Cornfeld, S. Fomin and Ya. Sinai, Ergodic Theory, Grundlehren der Mathe-
matischen Wissenschaften 245, Springer, New York—Berlin, 1982.

[20] D. Dolgopyat, Prevalence of rapid mixing-I, Ergodic Theory and Dynamical
Systems 18 (1998), 1097-1114.

[21] D. Dolgopyat, On decay of correlations in Anosov flows, Annals of Mathematics
147 (1998), 357-390.

[22] D. Dolgopyat, Prevalence of rapid mixing-II, Ergodic Theory and Dynamical
Systems 20 (2000), 1045-1059.

[23] D. Dolgopyat, Limit Theorems for partially hyperbolic systems, preprint.

[24] R. Ellis and W. Perrizo, Unique ergodicity of lows on homogeneous spaces, Israel
Journal of Mathematics 29 (1978), 276-284.

[25] M. Field, Generating sets for compact semisimple Lie groups, Proceedings of the
American Mathematical Society 127 (1999), 3361-3365.

[26] M. Field and M. Nicol, Ergodic theory of equivariant diffeomorphisms II: stable
ergodicity, preprint.

[27] M. Field and W. Parry, Stable ergodicity of skew extensions by compact Lie groups,
Topology 38 (1999), 167-187.

[28] A. Gamburd, D. Jakobson and P. Sarnak, Spectra of elements in the group ring of
SU(2), Journal of European Mathematical Society 1 (1999), 51-85.

[29] M. Grayson, C. Pugh and M. Shub, Stably ergodic diffeomorphisms, Annals of
Mathematics 140 (1994), 295-329.

[30] M. Gromov, Groups of polynomial growth and expanding maps, Publications
Mathématiques de I'Institut des Hautes Etudes Scientifiques 53 (1981), 53-73.

[31] Y. Guivarch, M. Keane and B. Roynette, Marches aleatoires sur les groups de Lie,
Lecture Notes in Mathematics 624, Springer, Berlin-New York, 1977.

[32] N. Haydn, Canonical product structure of equilibrium states, Random and
Computational Dynamics 2 (1994), 79-96.

(33] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Mathe-
matics 583, Springer, Berlin-New York, 1977.

[34] A. Katok and A. Kononenko, Cocycle stability for partially hyperbolic systems,
Mathematical Research Letters 3 (1996), 191-210.

[35] C. Liverani, Central limit theorem for deterministic systems, in International
Conference on Dynamical Systems (F. Ledrappier, J. Lewowics and S. Newhouse,
eds.), Pitman Research Notes in Mathematics 363, 1996, pp. 56-75.

[36] D. Ornstein and B. Weiss, Geodesic flows are Bernoulli, Israel Journal of Mathe-
matics 14 (1973), 184-198.



Vol. 130, 2002 COMPACT GROUP EXTENSIONS OF HYPERBOLIC SYSTEMS 205

[37] W. Parry and M. Pollicott, Zeta functions and periodic orbit structure of hyper-
bolic dynamics, Asterisque 187—188 (1990), 1-268.

[38] W. Parry and M. Pollicott, Livsic cocycle equation for compact Lie group
extensions of hyperbolic systems, Journal of the London Mathematical Society
56 (1997), 405-416.

[39] W. Parry and M. Pollicott, Stability of mixing for toral extensions of hyperbolic
systems, Proceeings of the Steklov Institute of Mathematics 216 (1997), 354-363.

[40] C.Pugh and M. Shub, Stably ergodic dynamical systems and partial hyperbolicity,
Journal of Complexity 13 (1997), 125-179.

[41] C. Pugh and M. Shub, Stable ergodicity and juliene quasiconformality, Journal of
European Mathematical Society 2 (2000), 1-52.

[42] M. Ratner, Anosov flows with Gibbs measures are also Bernoullian, Israel Journal
of Mathematics 17 (1974), 380-391.

[43] D. Rudolph, Classifying the isometric extensions of Bernoulli shifts, Journal
d’Analyse Mathématique 34 (1978), 36-60.

[44] M. Shub, Endomorphisms of compact differentiable manifolds, American Journal
of Mathematics 91 (1969), 175-199.

[45] M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents,
Inventiones Mathematicae 139 (2000), 495-508.

[46] Ya. Sinai, Dynamical systems with countably multiple Lesbegue spectrum—II,
Izvestiya 30 (1966), 15-68.

[47] Ya. Sinai, Gibbs measures in ergodic theory, Russian Mathematical Surveys 27
(1972), 21-70.

[48] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity,
Annals of Mathematics 147 (1998), 585-650.

[49] L.-S. Young, Recurrence times and rates of mixing, Israel Journal of Mathematics
110 (1999). 153-188.



